Refine Your Search

Topic

Author

Search Results

Journal Article

Cooling Loss Reduction of Highly Dispersed Spray Combustion with Restricted In-Cylinder Swirl and Squish Flow in Diesel Engine

2012-04-16
2012-01-0689
In diesel engines with a straight intake port and a lipless cavity to restrict in-cylinder flow, an injector with numerous small-diameter orifices with a narrow angle can be used to create a highly homogeneous air-fuel mixture that, during PCCI combustion, dramatically reduces the NOX and soot without the addition of expensive new devices. To further improve this new combustion concept, this research focused on cooling losses, which are generally thought to account for 16 to 35% of the total energy of the fuel, and approaches to reducing fuel consumption were explored. First, to clarify the proportions of convective heat transfer and radiation in the cooling losses, a Rapid Compression Machine (RCM) was used to measure the local heat flux and radiation to the combustion chamber wall. The results showed that though larger amounts of injected fuel increased the proportion of heat losses from radiation, the primary factor in cooling losses is convective heat transfer.
Technical Paper

Real Time Oil Concentration Measurement in Automotive Air Conditioning by Ultraviolet Light Absorption

1991-02-01
910222
A method of real time oil concentration measurment has been developed utilizing the effect of ultraviolet light absorption by lubricating oil in the liquid refrigerant line of an automotive air conditioning system. The light wavelengths from 200nm to 370nm are selected based on the ultraviolet light absorption sensitivity of the oils and refrigerants (CFC12,HFC134a). The effects of temperature,pressure and contaminantion on the absorbance of light are investigated in order to determine how these parameters affect the concentration measurement. The density changes of refrigerants are then compensated in the calculation for the oil concentration. The uncertainties of the overall concentration measurement are less than ±0.1 weight percent at 1 weight percent concentration. A transient oil circulation of the automotive air conditioner is measured by using this method.
Technical Paper

Sound - Design for Motorcycles Influence of Different Parameters on the Sound

2006-11-13
2006-32-0084
Beside performance, handling and styling the sound characteristic of a motorcycle is a very important feature for the acceptance of the product by the customers and therefore the commercial success of a new product. Creating a special brand sound becomes more and more important to create a product that can be easily distinguished from competitor products and is therefore considered to be something special. On the other hand the legal limits in terms of pass - by noise allow for a very little margin for the creation of a special sound. During the product sound design phase the different perceptions of the rider wearing a helmet and pedestrians have to be considered. In passenger cars sound design has been known for a long time and the creation of a special sound for the driver inside the passenger compartment can be achieved with little influence on the exterior noise and therefore on the noise which is limited by legislation.
Technical Paper

Catalytic Converters in a 1d Cycle Simulation Code Considering 3d Behavior

2003-03-03
2003-01-1002
The objective of this study to introduce the newly developed Discrete Channel Method (DCM) as a fast and efficient method for the prediction of the 3d and transient behavior of honeycomb-type catalytic converters in automotive applications. The approach is based on the assumption that the regions between the channels are treated as a reactor with a homogeneously distributed heat source due to chemical conversion. Therefore, each radial direction can be described by a center, a boundary and only a few intermediate channels between them. The discrete channels are described by transient, 1d conservation equations that characterize the behavior of channels at different radial positions. The heat entering and leaving each discrete channel is evaluated by the gradients of the temperature field in conjunction with the heat conductivity of the substrate. The approach is validated by experimental data and serves as a module in the thermodynamic and engine analysis design tool BOOST.
Technical Paper

Stratification Features of Swirl Nozzle Sprays and Slit Nozzle Spray in DI Gasoline Combustion

2003-05-19
2003-01-1812
The stratification feature of DI gasoline combustion was studied by using a constant volume combustion vessel. An index of stratification degree, defined as volumetric burning velocity, has been proposed based on the thermodynamic analysis of the indicated pressure data. The burning feature analysis using this stratification degree and the fuel vapor concentration measurement using He-Ne laser ray absorption method were carried out for the swirl nozzle spray with 90° cone angle and the slit nozzle spray with 60° fan angle. Ambient pressure and ambient temperature were changed from atmospheric condition to 0.5∼0.6 MPa and 465 K, respectively. Air Swirl with swirl ratio of 0∼1.0 were added for the 90° swirl nozzle spray. Single component fuels with different volatility and self-ignitability from each other were used besides gasoline fuel. The major findings are as follows. High ambient temperature improves stratification degree due to the enhanced fuel vaporization and vapor diffusion.
Technical Paper

Modeling of Wall Impinging Behavior with a Fan Shaped Spray

2003-05-19
2003-01-1841
The experiment-based droplet impinging breakup model was applied to a fan shaped spray and the impinging behavior was analyzed quantitatively. Evaluation of the quantitative results with validation tests verified the following. The model enables prediction of fan shaped spray thickness after impingement caused by the breakup of fuel droplets, which could not be represented with the Wall-Jet model, widely used at present. Fuel film movement on a wall is negligible when the injection pressure of the fan shaped spray is high and the spray travelling length is not too short. The proposed heat transfer coefficient between fuel film and the wall is too small to represent the vaporizing rate of the fuel film.
Technical Paper

Impact of GHG-Phase II and Ultra Low NOx on the Base Powertrain

2017-05-10
2017-01-1925
With the implementation of EURO VI and similar emission legislation, the industry assumed the pace and stringency of new legislation would be reduced in the future. The latest announcements of proposed and implemented legislation steps show that future legislation will be even more stringent. The currently leading announced legislation, which concerns a large number of global manufacturers, is the legislation from the United States (US) Environmental Protection Agency (EPA) and the California Air Resources Board (CARB). Both announced new legislation for CO2, Greenhouse Gas (GHG) Phase II. CARB is also planning additional Ultra Low NOx regulations. Both regulations are significant and will require a number of technologies to be used in order to achieve the challenging limits. AVL published some engine related measures to address these legislation steps.
Technical Paper

Highly Integrated Fuel Cell Analysis Infrastructure for Advanced Research Topics

2017-03-28
2017-01-1180
The limitation of global warming to less than 2 °C till the end of the century is regarded as the main challenge of our time. In order to meet COP21 objectives, a clear transition from carbon-based energy sources towards renewable and carbon-free energy carriers is mandatory. Polymer electrolyte membrane fuel cells (PEMFC) allow an energy-efficient, resource-efficient and emission-free conversion of regenerative produced hydrogen. For these reasons fuel cell technologies emerge in stationary, mobile and logistic applications with acceptable cruising ranges as well as short refueling times. In order to perform applied research in the area of PEMFC systems, a highly integrated fuel cell analysis infrastructure for systems up to 150 kW electric power was developed and established within a cooperative research project by HyCentA Research GmbH and AVL List GmbH in Graz, Austria. A novel open testing facility with hardware in the loop (HiL) capability is presented.
Technical Paper

Study on the Prediction of VOC Concentration in Vehicle Cabins (1) Investigation of Relationship between Toluene Concentrations and Evaluation Conditions using Interior Parts

2013-04-08
2013-01-0490
The Japan Automobile Manufacturers Association (JAMA) has recommended the voluntary regulation of the levels of volatile organic compound (VOC) emissions from vehicles. However, initiatives to reduce these emissions further are being implemented in Japan to create a healthier and more comfortable environment within vehicles. In this study, it was attempted to estimate the observable amounts of VOC emitted from products used in vehicles based on the actual emission of VOC from the products components. The VOC we focused on was toluene. The amounts of toluene volatilizing from the components of a disassembled vehicular product were measured and tested whether a simple sum of these values could be used to predict the amount of toluene emitted from the whole product. However, it was found this predicted value deviated significantly from the actual amount of toluene emitted from the product.
Technical Paper

Study on the Prediction of VOC Concentration in Vehicle Cabins (2) Development of Labeled Compound Addition Method

2013-04-08
2013-01-0491
The purpose of this study is to construct a method to predict vehicle cabin VOC (volatile organic compounds) concentration. Several methods have been used previously to evaluate VOC emission from interior parts and materials (e.g., sampling bag method, 1 m3 chamber method). However, measurement conditions vary depending on the method used, making it difficult to predict vehicle cabin VOC concentration from the VOC values evaluated for component parts. In this paper, we focused on measurement of toluene concentration using the bag method and investigated the relationship between VOC emissions and measurement conditions. We assumed that the amount of VOC contained in the parts (RA) and the adsorptive capacity of the parts (K) can describe the VOC amount obtained (RG) when the VOC concentration in the bag reaches equilibrium. We developed a novel method incorporating a labeled compound to predict RA and K.
Technical Paper

Aspects of Cabin Fluid Dynamics, Heat Transfer, and Thermal Comfort in Vehicle Thermal Management Simulations

2005-05-10
2005-01-2000
Automobile manufacturers and suppliers are under pressure to develop more efficient thermal management systems as fuel consumption and emission regulations become stricter and buyers demand greater comfort and safety. Additionally, engines must be very efficient and windows must deice and defog quickly. These requirements are often in conflict. Moreover, package styling and cost constraints severely limit the design of coolant and air conditioning systems. Simulation-based design and virtual prototyping can ensure greater product performance and quality at reduced development time and cost. The representation of the vehicle thermal management needs a scalable approach with 0-D, 1-D, and 3-D fluid dynamics, multi-body dynamics, 3-D structural analysis, and control unit simulation capabilities. Different combinations and complexities of the simulation tools are required for various phases of the product development process.
Technical Paper

Numerical Studies for De-Icing Validation

2005-04-11
2005-01-1883
The de-icing process of the windscreen is a demanding problem in car climatization. In the first stages of the development procedure of air ducts, the numerical simulation plays an important role due to economy of time and money. Unfortunately, the available numerical methods for the generation of the computational grid and the simulation of the de-icing process are very time consuming and are complicated in handling. Therefore normally the quality of the de-icing process is evaluated with simplified simulation procedures or even with measurements late in the design process and necessary modifications are again time and cost consuming. The aim of this paper is to describe new methods for the de-icing simulation that will reduce meshing and calculation time by showing accurate results.
Technical Paper

Integrated 1-D Tools for Modeling Vehicle Thermal Management System

2004-11-16
2004-01-3406
The need to improve the engine performance and fuel consumption subject to ever more stringent emission standard spar the interest in the aspects of understanding and quantifying the thermal behavior of engine components and systems. Considering these points during the design of the vehicle thermal management system based on test would consume far too many resources. Fortunately, the simulation tools have become more prominent in the pre-prototype phase of the vehicle development process and they had reached a mature stage; where they can contribute successfully to a significant extend to meet the vehicle development targets. In this work, a methodology to model the Vehicle Thermal Management System (VTMS) in order to understand and quantify its behavior has been developed. The partial systems under consideration are: the gas circuit, the cooling circuit, the lubrication circuit and the thermal capacitance of the engine structure under the vehicle driving conditions.
Technical Paper

Reduction of Testing Time of PTCE/HTOE Tests Based on Real Road Load Profiles

2022-03-29
2022-01-0176
HTOE (High Temperature Operation Endurance) and PTCE (Power Thermal Cycle Endurance) tests are typically performed according automotive group standards, such as LV 124 [1], VW80000 [2], FCA CS.00056 [3] or PSA B21 7130 [4]. The LV 124-2 group standard, composed by representatives of automobile manufacturers like Audi AG, BMW AG, Volkswagen AG and Porsche AG describes a wide range of environmental tests and their requirements. In addition, calculation parameters and a method are given in the standard. These group standard tests are often attributed to IEC 60068-2-2 [5] for HTOE and IEC 60068-2-14 [6] for PTCE. As both of these tests are typically of long duration, fundamentally linked to reliability (therefore requiring a statistically significant number of samples) and of considerable importance to power electronic, they are worthy of additional scrutiny for automotive developers as most automotive development moves towards electrification.
Technical Paper

A Time Efficient Thermal and Hydrodynamic Model for Multi Disc Wet Clutches

2022-03-29
2022-01-0647
Wet Clutches are used in automotive powertrains to enable compact designs and efficient gear shifting. During the slip phase of engagement, significant flash temperatures arise at the friction disc to separator interface because of dissipative frictional losses. An important aspect of the design process is to ensure the interface temperature does not exceed the material temperature threshold at which accelerated wear behavior and/or thermal degradation occurs. During the early stages of a design process, it is advantageous to evaluate numerous system and component design iterations exposed to plethora of possible drive cycles. A simulation tool is needed which can determine the critical operational conditions the system must survive for performance and durability to be assured. This paper describes a time-efficient multiphysics model developed to predict clutch disc temperatures with a runtime in the order of minutes.
Technical Paper

Recycling Technology of Surface Material for Interior Trims

2000-03-06
2000-01-0741
Two-layered surface materials composed of a thermoplastic olefin elastomer (TPO) skin and a cross-linked polypropylene (PP)foam are increasingly replacing the conventional PVC skin/PVC foam for interior trims. In the past, recycled material obtained by melt-blending TPO skin and PP foam could not be re-used for TPO skin because of its appearance. A new recycling technology using the reaction biaxial extruder with a reaction agent can decompose the network structure of PP foam. As a result, PP foam is dispersed into TPO uniformly and the recycled material has properties and an appearance similar to virgin TPO. These new properties may allow the application of the recycled material as a surface material.
Technical Paper

Relationship between Localized Spine Deformation and Cervical Vertebral Motions for Low Speed Rear Impacts Using Human Volunteers

1999-09-23
1999-13-0010
It is important to more clearly identify the relationship among the ramping-up motion, straightening of the whole spine, and cervical vertebrae motion in order to clarify minor neck injury mechanism. The aim of the current study is to verify the influence of the change of the spine configuration on human cervical vertebral motion and on head/neck/torso kinematics under low speed rear-end impacts. Seven healthy human volunteers participated in the experiment under the supervision of an ethics committee. Each subject sat on a seat mounted on a sled that glided backward on rails and simulated actual car impact acceleration. Impact speeds (4, 6, and 8 km/h), and seat stiffness (rigid and soft) without headrest were selected. During the experiment, the change of the spine configuration (measured by a newly developed spine deformation sensor with 33 paired set strain gauges and placed on the skin) and the interface load-pressure distribution was recorded.
Technical Paper

Objective Evaluation of Exciting Engine Sound in Passenger Compartment During Acceleration

2000-03-06
2000-01-0177
This paper describes an objective evaluation method for the engine sound quality in a car interior during acceleration. Two principal factors, pleasantness and raciness, of the engine sound quality were found with a subjective evaluation test in a laboratory. Psycho-acoustic indexes corresponding to these factors were revealed by investigating the correlation among subjective ratings and acoustic characteristics. The index of raciness was originally proposed for the assessment of sound that makes driving fun when the sound is emphasized. We propose that the design of engine sound is required with consideration of the balance between pleasantness and raciness.
Technical Paper

Evaluation of Wind Noise in Passenger Car Compartment in Consideration of Auditory Masking and Sound Localization

1999-03-01
1999-01-1125
This paper describes a new method for objective evaluation of wind noise in the passenger compartment of a car. The loudness and direction of noise in each frequency band can be estimated by performing analyses based on human hearing properties. Therefore, those wind noise components that are annoying to the passengers or those wind noise components whose source location can be determined by the human listener can be identified objectively. Furthermore, the total loudness of wind noise can be estimated quite precisely by adding the loudness of the frequency bands for noise emanating from the direction of the side window.
Technical Paper

Heat Transfer to the Combustion Chamber and Port Walls of IC Engines - Measurement and Prediction

2000-03-06
2000-01-0568
This paper summarizes the results of several investigations on in-cylinder heat transfer during high-pressure and gas exchange phases as well as heat transfer in the inlet and outlet ports for a number of different engine types (DI Diesel, SI and gaseous fueled engine). The paper contains a comparision of simulation results and experimental data derived from heat flux measurements. Numerical results were obtained from zero-, one- and three-dimensional simulation methods. Time and spatially resolved heat fluxes were measured applying the surface temperature method and special heat flux sensors. The paper also includes an assessment of different sensor types with respect to accuracy and applicability.
X