Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

A Priori Analysis of Acoustic Source Terms from Large-Eddy Simulation in Turbulent Pipe Flow

2020-09-30
2020-01-1518
The absence of combustion engine noise pushes increasingly attention to the sound generation from other, even much weaker, sources in the acoustic design of electric vehicles. The present work focusses on the numerical computation of flow induced noise, typically emerging in components of flow guiding devices in electro-mobile applications. The method of Large-Eddy Simulation (LES) represents a powerful technique for capturing most part of the turbulent fluctuating motion, which qualifies this approach as a highly reliable candidate for providing a sufficiently accurate level of description of the flow induced generation of sound. Considering the generic test configuration of turbulent pipe flow, the present study investigates in particular the scope and the limits of incompressible Large-Eddy Simulation in predicting the evolution of turbulent sound sources to be supplied as source terms into the acoustic analogy of Lighthill.
Technical Paper

Uncertainty Quantification of Motorcycle Racing Upstream Flow Conditions

2020-04-14
2020-01-0667
The upstream flow conditions and the use of tractive power to accelerate a vehicle are both sources of energy loss. The vehicle speed and the upstream flow conditions result in the oncoming wind vector experienced by the moving vehicle. The aim of the present work is to show a new approach to consider the chaotic and random behavior of surrounding flow conditions and their influence on driving performance. The approach is shown for the example of motorbike racing conditions. Special interest was put on a description of the flow conditions with respect to well know turbulent flow field parameters like the turbulent length scale or the turbulence intensity. Depending on where the flow conditions are measured, stationary in the earth reference frame, or on a moving vehicle, it is quite difficult to get a robust description of the flow field parameters. These parameters are used together with the Reynolds number to predict the aerodynamic behavior by correlation functions or maps.
Technical Paper

Simulation of Exhaust Gas Aftertreatment Systems - Thermal Behavior During Different Operating Conditions

2008-04-14
2008-01-0865
The introduction of more stringent standards for engine emissions requires continuous improvement of exhaust gas aftertreatment systems. Modern systems require a combined design and application of different aftertreatment devices. Computer simulation helps to investigate the complexity of different system layouts. This study presents an overall aftertreatment modeling framework comprising dedicated models for pipes, oxidation catalysts, wall flow particulate filters and selective catalytic converters. The model equations of all components are discussed. The individual behavior of all components is compared to experimental data. With these well calibrated models a simulation study on a DOC-DPF-SCR exhaust system is performed. The impact of pipe wall insulation on the overall NOx conversion performance is investigated during four different engine operating conditions taken from a heavy-duty drive cycle.
Technical Paper

Integrated 1D to 3D Simulation Workflow of Exhaust Aftertreatment Devices

2004-03-08
2004-01-1132
Future limits on emissions for both gasoline and Diesel engines require adequate and advanced systems for the after-treatment of the exhaust gas. Computer models as a complementary tool to experimental investigations are an indispensable part to design reliable after-treatment devices such as catalytic converters and Diesel particulate filters including their influence on the power-train. Therefore, the objective of this contribution is to present an integrated 1D to 3D simulation workflow of of catalytic converters and Diesel particulate filters. The novelty of this approach is that parameters or set of parameters, obtained by a fast and efficient 1D-gas exchange and cycle simulation code for power-trains (AVL (2002a)), are readily transferable onto a 3D general purpose simulation code (AVL (2002b)). Thus, detailed aspects such as spatial distribution of temperatures or heat losses are investigated with only a single effort to estimate parameters.
Technical Paper

Aero-Acoustic Source Terms from Large-Eddy Simulation in Turbulent Pipe Flow

2022-06-15
2022-01-0937
In the acoustic design of flow guiding components, novel simulation concepts for predicting relevant sound sources in the early design state become increasingly important. This requires accurate numerical methods to describe the involved phenomena. The present study computationally investigates the flow-induced aeroacoustic sound sources, generated in turbulent pipe flow. The analysis follows a hybrid approach, where the acoustic sound field is predicted separately from the underlying turbulent flow field, supplied with acoustic source terms from an incompressible flow simulation of the considered configuration in the limit of low Mach number. Source terms for use as input into different acoustic wave equations, the Lighthill wave equation, the vortex sound theory, and the Perturbed Convective Wave Equation (PCWE) are computed performing incompressible Direct Numerical Simulations (DNS) and Large-Eddy Simulations (LES) of fully developed pipe flow.
Technical Paper

Time-Domain Simulation Approach for the Electromagnetically Excited Vibrations of Squirrel-Cage Induction Machine Drives under Pulse-Width Modulated Supply

2022-06-15
2022-01-0932
In this paper, the multi-physical simulation workflow from electromagnetics to structural dynamics for a squirrel-cage induction machine is explored. In electromagnetic simulations, local forces and rotor torque are calculated for specific speed-torque operation points. In order to consider non-linearities and interaction with control system as well as transmission, time-domain simulations are carried out. For induction machines, the computational effort with full transient numerical methods like finite element analysis (FEA) is very high. A novel reduced order electro-mechanical model is presented. It still accounts for vibro-acoustically relevant harmonics due to pulse-width modulation (PWM), slotting, distributed winding and saturation effects, but is substantially faster (minutes to hours instead of days to weeks per operation point).
Technical Paper

Numerical Studies for De-Icing Validation

2005-04-11
2005-01-1883
The de-icing process of the windscreen is a demanding problem in car climatization. In the first stages of the development procedure of air ducts, the numerical simulation plays an important role due to economy of time and money. Unfortunately, the available numerical methods for the generation of the computational grid and the simulation of the de-icing process are very time consuming and are complicated in handling. Therefore normally the quality of the de-icing process is evaluated with simplified simulation procedures or even with measurements late in the design process and necessary modifications are again time and cost consuming. The aim of this paper is to describe new methods for the de-icing simulation that will reduce meshing and calculation time by showing accurate results.
Technical Paper

Concept Study of a 48V-Hybrid-Powertrain for L-Category Vehicles with Longitudinal Dynamic Simulation and Design of Experiments

2022-03-29
2022-01-0672
The demand for high efficiency powertrains in automotive engineering is further increasing, with hybrid powertrains being a feasible option to cope with new legislations. So far hybridization has only played a minor role for L-category vehicles. Focusing on an exemplary high-power L-category on-road vehicle, this research aims to show a new development approach, which combines longitudinal dynamic simulation (LDS) with “Design of Experiments” (DoE) in course of hybrid electric powertrain development. Furthermore, addressing the technological aspect, this paper points out how such a vehicle can benefit from 48V-hybridization of its already existing internal combustion powertrain. A fully parametric LDS model is built in Matlab/Simulink, with exchangeable powertrain components and an adaptable hybrid operation strategy. Beforehand, characterizing decisions as to focus on 48V and on parallel hybrid architecture are made.
Technical Paper

A Concept Investigation Simulation Model on Hybrid Powertrains for Handheld Tools

2020-11-30
2020-32-2316
Amid the increasing demand for higher efficiency in combustion driven handheld tools, the recent developments in electric machine technology together with the already existing benefits of small combustion engines for these applications favor the investigation of potential advantages in hybrid powertrain tools. This concept-design study aims to use a fully parametric, system-level simulation model with exchangeable blocks, created with a power-loss approach in Matlab and Simulink, in order to examine the potential of different hybrid configurations for different tool load cycles. After the model introduction, the results of numerous simulations for 36 to 100 cc engine displacement will be presented and compared in terms of overall system efficiency and overall powertrain size. The different optimum hybrid configurations can show a reduction up to 30 % in system’s brake specific fuel consumption compared to the baseline combustion engine driven model.
Technical Paper

Co-Simulation of a BEV Thermal Management System with Focus on Advanced Simulation Methodologies

2023-10-31
2023-01-1609
In battery electric vehicles (BEV), thermal management is a key technique to improve efficiency and lifetime. Currently, manufacturers use different cooling concepts with numerous architectures. This work describes the development of a co-simulation framework to optimize BEV thermal management on system level, using advanced simulation methodologies also on component level, merging simulation and testing. Due to interactions between multiple conditioning circuits, thermal management optimization requires an overall vehicle approach. Thus, a full vehicle co-simulation of a BEV is developed, combining 1D thermal management software KULI and MATLAB/Simulink. Within co-simulation, the precise modeling of vehicle’s subsystems is important to predict thermal behavior and to calculate dynamic heating and cooling demands as well as exchanged energy flows with the thermal management system.
Technical Paper

A Comprehensive Training Approach for Automotive Cybersecurity Engineering

2024-04-09
2024-01-2800
Cybersecurity assumes a major role in the context of the automotive domain, where both existing and forthcoming regulations are heightening the need for robust security engineering. A significant milestone in advancing cybersecurity within the automotive industry is the release of the first international standard for automotive cybersecurity ISO/SAE 21434:2021 ‘Road Vehicles — Cybersecurity Engineering’. A recently published type approval regulation for automotive cybersecurity (UN R155) is also tailored for member countries of the UNECE WP.29 alliance. Thus, the challenges for embedded automotive systems engineers are increasing while frameworks, tools and shared concepts for cybersecurity engineering and training are scarce.
X