Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Experimental-Numerical Correlation of a Multi-Body Model for Comfort Analysis of a Heavy Truck

2020-04-14
2020-01-0768
In automotive market, today more than in the past, it is very important to reduce time to market and, mostly, developing costs before the final production start. Ideally, bench and on-road tests can be replaced by multi-body studies because virtual approach guarantees test conditions very close to reality and it is able to exactly replicate the standard procedures. Therefore, today, it is essential to create very reliable models, able to forecast the vehicle behavior on every road condition (including uneven surfaces). The aim of this study is to build an accurate multi-body model of a heavy-duty truck, check its handling performance, and correlate experimental and numerical data related to comfort tests for model tuning and validation purposes. Experimental results are recorded during tests carried out at different speeds and loading conditions on a Belgian blocks track. Simulation data are obtained reproducing the on-road test conditions in multi-body environment.
Technical Paper

An Objective Evaluation of the Comfort During the Gear Change Process

2007-04-16
2007-01-1584
This paper presents the methodology adopted by Politecnico di Torino Vehicle Dynamics Research Team to obtain objective indices for the evaluation of the comfort during the gear change process. Some test drivers and different passengers traveled on a test vehicle and assigned marks on the basis of their subjective feeling of comfort during the gearshifts. The comparison between the most significant subjective evaluations and the experimental values obtained by the instruments located on the vehicle is presented. As a consequence, some indices (based on physical parameters) to evaluate the efficiency and the comfort of the gearshift process are obtained. They are in good agreement with the subjective evaluations of the drivers and the passengers. The second part of the paper presents a driveline and vehicle model which was conceived to reproduce the phenomena experimented on the vehicle. The experimental validation of the model is presented.
Technical Paper

Integrated Active and Passive Systems for a Side Impact Scenario

2013-04-08
2013-01-1162
The paper presents a simulation methodology created to support an integrated safety system development process which was tested for the side impact collision load case. The methodology is based on the coupled and complementary use of two software packages: PreScan and Madymo. PreScan was utilized for designing two traffic scenarios and the sensing and control systems for the side collision recognition, while Madymo was utilized for assessing the effects of pre-crash deployment of thorax airbag. The collision conditions from the scenarios were used as input to define a Madymo side collision model of the host vehicle and to investigate and optimize several airbag deployment parameters: pre-crash deployment time, airbag permeability, vent hole size and vent hole opening time.
Technical Paper

A Methodology for Parameter Estimation of Nonlinear Single Track Models from Multibody Full Vehicle Simulation

2021-04-06
2021-01-0336
In vehicle dynamics, simple and fast vehicle models are required, especially in the framework of real-time simulations and autonomous driving software. Therefore, a trade-off between accuracy and simulation speed must be pursued by selecting the appropriate level of detail and the corresponding simplifying assumptions based on the specific purpose of the simulation. The aim of this study is to develop a methodology for map and parameter estimation from multibody simulation results, to be used for simplified vehicle modelling focused on handling performance. In this paper, maneuvers, algorithms and results of the parameter estimation are reported, together with their integration in single track models with increasing complexity and fidelity. The agreement between the multibody model, used as reference, and four single track models is analyzed and discussed through the evaluation of the correlation index.
Technical Paper

A Numerical Analysis of Terrain and Vehicle Characteristics in Off-Road Conditions through Semi-Empirical Tire Contact Modelling

2024-04-09
2024-01-2297
In the last decades, the locomotion of wheeled and tracked vehicles on soft soils has been widely investigated due to the large interest in planetary, agricultural, and military applications. The development of a tire-soft soil contact model which accurately represents the micro and macro-scale interactions plays a crucial role for the performance assessment in off-road conditions since vehicle traction and handling are strongly influenced by the soil characteristics. In this framework, the analysis of realistic operative conditions turns out to be a challenging research target. In this research work, a semi-empirical model describing the interaction between a tire and homogeneous and fine-grained soils is developed in Matlab/Simulink. The stress distribution and the resulting forces at the contact patch are based on well-known terramechanics theories, such as pressure-sinkage Bekker’s approach and Mohr-Coulomb’s failure criterion.
X