Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Analysis of Various Operating Strategies for a Parallel-Hybrid Diesel Powertrain with a Belt Alternator Starter

2012-05-30
This paper presents a low-cost path for extending the range of small urban pure electric vehicles by hydraulic hybridization. Energy management strategies are investigated to improve the electric range, component efficiencies, as well as battery usable capacity. As a starting point, a rule-based control strategy is derived by analysis of synergistic effects of lead-acid batteries, high efficient operating region of DC motor and the hydraulic pump/motor. Then, Dynamic Programming (DP) is used as a benchmark to find the optimal control trajectories for DC motor and Hydraulic Pump/Motor. Implementable rules are derived by studying the optimal control trajectories from DP. With new improved rules implemented, simulation results show electric range improvement due to increased battery usable capacity and higher average DC motor operating efficiency. Presenter Xianke Lin
Journal Article

Particle Number and Size Distribution from a Small Displacement Automotive Diesel Engine during DPF Regeneration

2010-05-05
2010-01-1552
The aim of this work is to analyze particle number and size distribution from a small displacement Euro 5 common rail automotive diesel engine, equipped with a close coupled aftertreatment system, featuring a DOC and a DPF integrated in a single canning. In particular the effects of different combustion processes on PM characteristics were investigated, by comparing measurements made both under normal operating condition and under DPF regeneration mode. Exhaust gas was sampled at engine outlet, at DOC outlet and at DPF outlet, in order to fully characterize PM emissions through the whole exhaust line. After a two stage dilution system, sampled gas was analyzed by means of a TSI 3080 SMPS, in the range from 6 to 240 nm. Particle number and size distribution were evaluated at part load operating conditions, representative of urban driving.
Journal Article

Computational Study of the Aerodynamics of a Realistic Car Model by Means of RANS and Hybrid RANS/LES Approaches

2014-04-01
2014-01-0594
The aerodynamic properties of a BMW car model, representing a 40%-scaled model of a relevant car configuration, are studied computationally by means of the Unsteady RANS (Reynolds-Averaged Navier-Stokes) and Hybrid RANS/LES (Large-Eddy Simulation) approaches. The reference database (geometry, operating parameters and surface pressure distribution) are adopted from an experimental investigation carried out in the wind tunnel of the BMW Group in Munich (Schrefl, 2008). The present computational study focuses on validation of some recently developed turbulence models for unsteady flow computations in conjunction with the universal wall treatment combining integration up to the wall and high Reynolds number wall functions in such complex flow situations. The turbulence model adopted in both Unsteady RANS and PANS (Partially-Averaged Navier Stokes) frameworks is the four-equation ζ − f formulation of Hanjalic et al. (2004) based on the Elliptic Relaxation Concept (Durbin, 1991).
Journal Article

A Study on Operation Fluid Consumption for Heavy Duty Diesel Engine Application using both, EGR and SCR

2013-09-24
2013-01-2474
This paper describes a method for optimization of engine settings in view of best total cost of operation fluids. Under specific legal NOX tailpipe emissions requirements the engine out NOX can be matched to the current achievable SCR NOX conversion efficiency. In view of a heavy duty long haul truck application various specific engine operation modes are defined. A heavy duty diesel engine was calibrated for all operation modes in an engine test cell. The characteristics of engine operation are demonstrated in different transient test cycles. Optimum engine operation mode (EOM) selection strategies between individual engine operation modes are discussed in view of legal test cycles and real world driving cycles which have been derived from on-road tests.
Journal Article

A Model-Based Configuration Approach for Automotive Real-Time Operating Systems

2015-04-14
2015-01-0183
Automotive embedded systems have become very complex, are strongly integrated, and the safety-criticality and real-time constraints of these systems raise new challenges. The OSEK/VDX standard provides an open-ended architecture for distributed real-time capable units in vehicles. This is supported by the OSEK Implementation Language (OIL), a language aiming at specifying the configuration of these real-time operating systems. The challenge, however, is to ensure consistency of the concept constraints and configurations along the entire product development. The contribution of this paper is to bridge the existing gap between model-driven systems engineering and software engineering for automotive real-time operating systems (RTOS). For this purpose a bidirectional tool bridge has been established based on OSEK OIL exchange format files.
Technical Paper

Identifying Critical Use Cases for a Plug-in Hybrid Electric Vehicle Battery Pack from Thermal and Ageing Perspectives

2021-09-21
2021-01-1251
The current trend towards an increasing electrification of road vehicles brings to life a whole series of unprecedent design issues. Among these, the ageing process that affects the lifetime of lithium-ion based energy storage systems is of particular importance since it turns out to be extremely sensitive to the variation of battery operating conditions normally occurring especially in hybrid electric vehicles (HEVs). This paper aims at analyzing the impact of operating conditions on the predicted lifetime of a parallel-through-the-road plug-in HEV battery both from thermal and ageing perspectives. The retained HEV powertrain architecture is presented first and modeled, and the related energy management system is implemented. Dedicated numerical models are also discussed for the high-voltage battery pack that allow predicting its thermal behavior and cyclic ageing.
Technical Paper

An Engine Parameters Sensitivity Analysis on Ducted Fuel Injection in Constant-Volume Vessel Using Numerical Modeling

2021-09-05
2021-24-0015
The use of Ducted Fuel Injection (DFI) for attenuating soot formation throughout mixing-controlled diesel combustion has been demonstrated impressively effective both experimentally and numerically. However, the last research studies have highlighted the need for tailored engine calibration and duct geometry optimization for the full exploitation of the technology potential. Nevertheless, the research gap on the response of DFI combustion to the main engine operating parameters has still to be fully covered. Previous research analysis has been focused on numerical soot-targeted duct geometry optimization in constant-volume vessel conditions. Starting from the optimized duct design, the herein study aims to analyze the influence of several engine operating parameters (i.e. rail pressure, air density, oxygen concentration) on DFI combustion, having free spray results as a reference.
Technical Paper

21SIAT-0638 - Fleet Analytics - A Data-Driven and Synergetic Fleet Validation Approach

2021-09-22
2021-26-0499
Current developments in automotive industry such as hybrid powertrains and the continuously increasing demands on emission control systems, are pushing complexity still further. Validation of such systems lead to a huge amount of test cases and hence extreme testing efforts on the road. At the same time the pressure to reduce costs and minimize development time is creating challenging boundaries on development teams. Therefore, it is of utmost importance to utilize testing and validation prototypes in the most efficient way. It is necessary to apply high levels of instrumentation and collect as much data as possible. And a streamlined data pipeline allows the fleet managers to get new insights from the raw data and control the validation vehicles as well as the development team in the most efficient way. In this paper we will demonstrate a data-driven approach for validation testing.
Technical Paper

A Theoretical and Experimental Analysis of the Coulomb Counting Method and of the Estimation of the Electrified-Vehicles Electricity Balance in the WLTP

2020-06-30
2020-37-0020
The battery of a vehicle with an electrified powertrain (Hybrid Electric Vehicle or Battery Electric Vehicle), is required to operate with highly dynamic power outputs, both for charging and discharging operation. Consequently, the battery current varies within an extensive range during operation and the battery temperature also changes. In some cases, the relationship between the current flow and the change in the electrical energy stored seems to be affected by inefficiencies, in literature described as current losses, and nonlinearities, typically associated with the complex chemical and physical processes taking place in the battery. When calculating the vehicle electrical energy consumption over a trip, the change in the electrical energy stored at vehicle-level has to be taken into account. This quantity, what we could call the vehicle electricity balance, is typically obtained through a time-based integration of the battery current of all the vehicle batteries during operation.
Technical Paper

Multitarget Evaluation of Hybrid Electric Vehicle Powertrain Architectures Considering Fuel Economy and Battery Lifetime

2020-06-30
2020-37-0015
Hybrid electric vehicle (HEV) powertrains are characterized by a complex design environment as a result of both the large number of possible layouts and the need for dedicated energy management strategies. When selecting the most suitable hybrid powertrain architecture at an early design stage of HEVs, engineers usually focus solely on fuel economy (directly linked to tailpipe emissions) and vehicle drivability performance. However, high voltage batteries are a crucial component of HEVs as well in terms of performance and cost. This paper introduces a multitarget assessment framework for HEV powertrain architectures which considers both fuel economy and battery lifetime. A multi-objective formulation of dynamic programming is initially presented as an off-line optimal HEV energy management strategy capable of predicting both fuel economy performance and battery lifetime of HEV powertrain layout options.
Journal Article

Model-Based Control of BMEP and NOx Emissions in a Euro VI 3.0L Diesel Engine

2017-09-04
2017-24-0057
A model-based approach to control BMEP (Brake Mean Effective Pressure) and NOx emissions has been developed and assessed on a FPT F1C 3.0L Euro VI diesel engine for heavy-duty applications. The controller is based on a zero-dimensional real-time combustion model, which is capable of simulating the HRR (heat release rate), in-cylinder pressure, BMEP and NOx engine-out levels. The real-time combustion model has been realized by integrating and improving previously developed simulation tools. A new discretization scheme has been developed for the model equations, in order to reduce the accuracy loss when the computational step is increased. This has allowed the required computational time to be reduced to a great extent.
Technical Paper

A Dynamic Programming Algorithm for HEV Powertrains Using Battery Power as State Variable

2020-04-14
2020-01-0271
One of the first steps in powertrain design is to assess its best performance and consumption in a virtual phase. Regarding hybrid electric vehicles (HEVs), it is important to define the best mode profile through a cycle in order to maximize fuel economy. To assist in that task, several off-line optimization algorithms were developed, with Dynamic Programming (DP) being the most common one. The DP algorithm generates the control actions that will result in the most optimal fuel economy of the powertrain for a known driving cycle. Although this method results in the global optimum behavior, the DP tool comes with a high computational cost. The charge-sustaining requirement and the necessity of capturing extremely small variations in the battery state of charge (SOC) makes this state vector an enormous variable. As things move fast in the industry, a rapid tool with the same performance is required.
Technical Paper

Human-Driving Highway Overtake and Its Perceived Comfort: Correlational Study Using Data Fusion

2020-04-14
2020-01-1036
As an era of autonomous driving approaches, it is necessary to translate handling comfort - currently a responsibility of human drivers - to a vehicle imbedded algorithm. Therefore, it is imperative to understand the relationship between perceived driving comfort and human driving behaviour. This paper develops a methodology able to generate the information necessary to study how this relationship is expressed in highway overtakes. To achieve this goal, the approach revolved around the implementation of sensor Data Fusion, by processing data from CAN, camera and LIDAR from experimental tests. A myriad of variables was available, requiring individuating the key-information and parameters for recognition, classification and understanding of the manoeuvres. The paper presents the methodology and the role each sensor plays, by expanding on three main steps: Data segregation and parameter selection; Manoeuvre detection and processing; Manoeuvre classification and database generation.
Technical Paper

Real Time Energy Management Control Strategies for an Electrically Supercharged Gasoline Hybrid Vehicle

2020-04-14
2020-01-1009
The high level of electric power available on a Hybrid Electric Vehicle (HEV) enables the introduction of electrical auxiliaries in addition or in substitution to the ones currently available on a conventional powertrain. Among these auxiliaries, electric Superchargers (eSC) for the improvement of the vehicle performance or electrically heated catalysts for the reduction of the light-off time of the after-treatment may dramatically affect the Energy Management System (EMS) of an HEV. Moreover, since these devices are only fluid-dynamically, but not mechanically, linked to the powertrain, they are traditionally neglected in the optimization of the powersplit between internal combustion engine and electric machines by the EMS. The aim of the current work is the development of an EMS that is able to consider in real time the overall electric energy consumption of the entire powertrain.
Journal Article

Compact Engine Architecture for Best Fuel Efficiency and High Performance - Challenge or Contradiction

2011-11-08
2011-32-0595
The world of automotive engineering shows a clear direction for upcoming development trends. Stringent fleet average fuel consumption targets and CO2 penalties as well as rising fuel prices and the consumer demand to lower operating costs increases the engineering efforts to optimize fuel economy. Passenger car engines have the benefit of higher degree of technology which can be utilized to reach the challenging targets. Variable valve timing, downsizing and turbo charging, direct gasoline injection, highly sophisticated operating strategies and even more electrification are already common technologies in the automotive industry but can not be directly carried over into a motorcycle application. The major differences like very small packaging space, higher rated speeds, higher power density in combination with lower production numbers and product costs do not allow implementation such high of degree of advanced technology into small-engine applications.
Journal Article

Analysis of Various Operating Strategies for a Parallel-Hybrid Diesel Powertrain with a Belt Alternator Starter

2012-04-16
2012-01-1008
The sustainable use of energy and the reduction of pollutant emissions are main concerns of the automotive industry. In this context, Hybrid Electric Vehicles (HEVs) offer significant improvements in the efficiency of the propulsion system and allow advanced strategies to reduce pollutant and noise emissions. The paper presents the results of a simulation study that addresses the minimization of fuel consumption, NOx emissions and combustion noise of a medium-size passenger car. Such a vehicle has a parallel-hybrid diesel powertrain with a high-voltage belt alternator starter. The simulation reproduces real-driver behavior through a dynamic modeling approach and actuates an automatic power split between the Internal Combustion Engine (ICE) and the Electric Machine (EM). Typical characteristics of parallel hybrid technologies, such as Stop&Start, regenerative braking and electric power assistance, are implemented via an operating strategy that is based on the reduction of total losses.
Journal Article

Sampling of Non-Volatile Vehicle Exhaust Particles: A Simplified Guide

2012-04-16
2012-01-0443
Recently, a particle number (PN) limit was introduced in the European light-duty vehicles legislation. The legislation requires measurement of PN, and particulate mass (PM), from the full dilution tunnel with constant volume sampling (CVS). Furthermore, PN measurements will be introduced in the next stage of the European Heavy-Duty regulation. Heavy-duty engine certification can be done either from the CVS or from a partial flow dilution system (PFDS). For research and development purposes, though, measurements are often conducted from the raw exhaust, thereby avoiding the high installation costs of CVS and PFDS. Although for legislative measurements requirements exist regarding sampling and transport of the aerosol sample, such requirements do not necessarily apply for raw exhaust measurements. Thus, measurement differences are often observed depending on where in the experimental set up sampling occurs.
Journal Article

Optimization of Electrified Powertrains for City Cars

2012-06-01
2011-01-2451
Sustainable and energy-efficient consumption is a main concern in contemporary society. Driven by more stringent international requirements, automobile manufacturers have shifted the focus of development into new technologies such as Hybrid Electric Vehicles (HEVs). These powertrains offer significant improvements in the efficiency of the propulsion system compared to conventional vehicles, but they also lead to higher complexities in the design process and in the control strategy. In order to obtain an optimum powertrain configuration, each component has to be laid out considering the best powertrain efficiency. With such a perspective, a simulation study was performed for the purpose of minimizing well-to-wheel CO2 emissions of a city car through electrification. Three different innovative systems, a Series Hybrid Electric Vehicle (SHEV), a Mixed Hybrid Electric Vehicle (MHEV) and a Battery Electric Vehicle (BEV) were compared to a conventional one.
Journal Article

On the Contact Interfaces between the Driver and the Vehicle Seat

2013-04-08
2013-01-0455
In mathematical and mechanical modeling terms, automotive seating is characterized by boundary conditions at the nonlinear contact interfaces. These contact interfaces are subjected to vibro-impacts (slaps) and frictional slips. The slaps occur in contact interfaces at high amplitude vibrations, being characterized by very short duration, rapid dissipation of energy and large accelerations and decelerations. By considering friction in contact interface modeling, the simulation of the interaction between the driver and the vehicle seat becomes more realistic. Vibro-impacts and frictional slips can be simultaneously developed in a contact surface. The boundary conditions identification for a seat and a wide range of drivers' body types is performed using the concept of interference distance or penetration. The interference distance is introduced as an optimization problem. It is shown that the optimization problem provides robust solutions to minimum distance and interference problems.
Technical Paper

Comparison of Particulate Matter and Number Emissions from a Floating and a Fixed Caliper Brake System of the Same Lining Formulation

2020-10-05
2020-01-1633
The particulate emissions of two brake systems were characterized in a dilution tunnel optimized for PM10 measurements. The larger of them employed a fixed caliper (FXC) and the smaller one a floating caliper (FLC). Both used ECE brake pads of the same lining formulation. Measured properties included gravimetric PM2.5 and PM10, Particle Number (PN) concentrations of both untreated and thermally treated (according to exhaust PN regulation) particles using Condensation Particle Counters (CPCs) having 23 and 10 nm cut-off sizes, and an Optical Particle Sizer (OPS). The brakes were tested over a section (trip-10) novel test cycle developed from the database of the Worldwide harmonized Light-Duty vehicles Test Procedure (WLTP). A series of trip-10 tests were performed starting from unconditioned pads, to characterize the evolution of emissions until their stabilization. Selected tests were also performed over a short version of the Los Angeles City Cycle.
X