Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

A Thermodynamic Study on Boosted HCCI: Motivation, Analysis and Potential

2010-04-12
2010-01-1082
Due to the increasingly stricter emission legislation and growing demands for lower fuel consumption, there have been significant efforts to improve combustion efficiency while satisfying the emission requirements. Homogeneous Charge Compression Ignition (HCCI) combined with turbo/supercharging on gasoline engines provides a particularly promising and, at the same time, a challenging approach. Naturally aspirated (n.a.) HCCI has already shown a considerable potential of about 14% in the New European Driving Cycle (NEDC) compared with a conventional 4-cylinder 2.0 liter gasoline Port Fuel Injection (PFI) engine without any advanced valve-train technology. The HCCI n.a. operation range is air breathing limited due to the hot residuals required for the self-ignition and to slow down reaction kinetics, and therefore is limited to a part-load operation area.
Journal Article

Development of the Combustion System for a Flexible Fuel Turbocharged Direct Injection Engine

2010-04-12
2010-01-0585
Gasoline turbocharged direct injection (GTDI) engines, such as EcoBoost™ from Ford, are becoming established as a high value technology solution to improve passenger car and light truck fuel economy. Due to their high specific performance and excellent low-speed torque, improved fuel economy can be realized due to downsizing and downspeeding without sacrificing performance and driveability while meeting the most stringent future emissions standards with an inexpensive three-way catalyst. A logical and synergistic extension of the EcoBoost™ strategy is the use of E85 (approximately 85% ethanol and 15% gasoline) for knock mitigation. Direct injection of E85 is very effective in suppressing knock due to ethanol's high heat of vaporization - which increases the charge cooling benefit of direct injection - and inherently high octane rating. As a result, higher boost levels can be achieved while maintaining optimal combustion phasing giving high thermal efficiency.
Journal Article

Online Engine Speed Based Adaptation of Air Charge for Two- Wheelers

2013-10-15
2013-32-9037
Regarding the strongly growing two-wheeler market fuel economy, price and emission legislations are in focus of current development work. Fuel economy as well as emissions can be improved by introduction of engine management systems (EMS). In order to provide the benefits of an EMS for low cost motorcycles, efforts are being made at BOSCH to reduce the costs of a port fuel injection (PFI) system. The present paper describes a method of how to reduce the number of sensors of a PFI system by the use of sophisticated software functions based on high-resolution engine speed evaluation. In order to improve the performance of a system working without a MAP-sensor (manifold air pressure sensor) an air charge feature (ACFn) based on engine speed is introduced. It is shown by an experiment that ACFn allows to detect and adapt changes in manifold air pressure. Cross-influences on ACFn are analyzed by simulations and engine test bench measurements.
Journal Article

Start/Stop Strategies for Two-Wheelers in the Emerging Markets

2013-10-15
2013-32-9125
Fuel economy of two-wheelers is an important factor influencing the purchasing psychology of the consumer within the emerging markets. Additionally, air pollution being a major environmental topic, there is a rising concern about vehicle emissions, especially in the big cities and their metropolitan areas. Potentially, the relatively expensive engine management systems are providing more features and value in comparison to the carburettor counterpart. The combustion system analysis is carried out on a 125 cm3 motorcycle engine and the subsequent numerical simulation comparing the carburettor and the Electronic (Port) Fuel Injection which provides a basis to establish the fuel consumption benefit for the electronic injection systems [1].
Journal Article

Computational Study of the Aerodynamics of a Realistic Car Model by Means of RANS and Hybrid RANS/LES Approaches

2014-04-01
2014-01-0594
The aerodynamic properties of a BMW car model, representing a 40%-scaled model of a relevant car configuration, are studied computationally by means of the Unsteady RANS (Reynolds-Averaged Navier-Stokes) and Hybrid RANS/LES (Large-Eddy Simulation) approaches. The reference database (geometry, operating parameters and surface pressure distribution) are adopted from an experimental investigation carried out in the wind tunnel of the BMW Group in Munich (Schrefl, 2008). The present computational study focuses on validation of some recently developed turbulence models for unsteady flow computations in conjunction with the universal wall treatment combining integration up to the wall and high Reynolds number wall functions in such complex flow situations. The turbulence model adopted in both Unsteady RANS and PANS (Partially-Averaged Navier Stokes) frameworks is the four-equation ζ − f formulation of Hanjalic et al. (2004) based on the Elliptic Relaxation Concept (Durbin, 1991).
Journal Article

Online Engine Speed based Adaptation of Combustion Phasing and Air-Fuel Ratio

2014-11-11
2014-32-0076
Equipping low cost two-wheelers with engine management systems (EMS) enables not only a reduction of emissions but also an improvement in fuel consumption and system robustness. These benefits are accompanied by initially higher system costs compared to carburetor systems. Therefore, intelligent software solutions are developed by Bosch, which enable a reduction of the necessary sensors for a port fuel injection system (PFI) and furthermore provide new possibilities for combustion control. One example for these intelligent software solutions is a model based evaluation of the engine speed. By use of the information contained in the engine speed signal, characteristic features like air charge, indicated mean effective pressure (imep) and combustion phasing are derivable. The present paper illustrates how these features could be used to reduce the system costs and to improve fuel consumption and system robustness.
Technical Paper

Prediction of Internal Responses Due to Changes in Boundary Conditions Using System Frequency Response Functions

2021-08-31
2021-01-1058
Vibration testing is often carried out for automotive components to meet guidelines based on their operational environments. This is an iterative process wherein design changes may need to be made depending on an intermediate model’s dynamic behavior. Predicting the behavior based on modifications in boundary conditions of a well-defined numerical model imparts practical insights to the component’s responses. To this end, application of a general method using experimental free-free condition frequency response functions of a structure is discussed in the presented work. The procedure is shown to be useful for prediction of responses when kinematic boundary conditions are applied, without the need for an actual measurement. This approach is outlined in the paper and is applied to datasets where dynamic modifications are made at multiple boundary nodes.
Technical Paper

Estimation of Diesel Soot Particles in Exhaust Gas Emission and Its Accumulation in Diesel Particulate Filter Using Graphical Calculation Model

2021-09-22
2021-26-0195
To avoid frequent regeneration intervals leading to expeditious ageing of the catalyst and substantial fuel penalty for the owner, it is always desired to estimate the soot coming from diesel exhaust emission, the soot accumulated and burnt in the Diesel Particulate Filter (DPF). Certain applications and vehicle duty cycles cannot make use of the differential pressure sensor for estimating the soot loading in the DPF because of the limitations of the sensor tolerance and measurement accuracy. The physical soot model is always active and hence a precise and more accurate model is preferred to calibrate & optimize the regeneration interval. This paper presents the approach to estimate the engine-out soot and the accumulated soot in the DPF using a graphical calculation tool (AVL Concerto CalcGraf™).
Technical Paper

Generic Methodology for Vibration and Wear Analysis to Understand Their Influences in an Electric Drivetrain

2020-09-30
2020-01-1506
The prime factor which influences noise and vibrations of electro-mechanical drives is wear at the components. This paper discusses the numerical methods developed for abrasion, vibration calculations and the coupling between wear and Noise Vibration and Harshness (NVH) models of the drive unit. The vibration domain model, initially, focuses on the calculations of mechanical excitations at the gear shafts which are generated via a nonlinear dynamic model. Furthermore, the bearings are studied for the influences on their stiffness and eventually their impact on the harmonics of the drivetrain. Later, free and forced vibrations of the complete drivetrain are simulated via a steady-state dynamic model. Consequently, the paper concentrates on the abrasion calculations at the gears. Wear is a complex process and understanding it is essential for determining the vibro-acoustics characteristics.
Technical Paper

Multi Domain Modeling of NVH for Electro-Mechanical Drives

2020-09-30
2020-01-1584
Acoustics and vibrations are amongst the foremost indicators in perceiving the quality of drive units. Analyzing these factors is vital for improve the performances of electro-mechanical systems. This paper deals with the study of vibro-acoustic behavior concerning the drivetrain components using system modeling and Finite Element calculations. A generic simulation methodology within system modeling is proposed enabling the vibro-acoustic simulation of electro-mechanical drivetrains. Excitations for these systems mostly arise from the electric motor and mechanical gears. The paper initially depicts the system model for gear whining considering the associated nonlinearities of the mesh. The results obtained from the gear mesh submodel, together with the excitations resulting from the motor, aid in the comprehension of the forces at the bearings and of the vibrations at the housings.
Journal Article

Fuel-Independent Particulate Emissions in an SIDI Engine

2015-04-14
2015-01-1081
The fuel-independent particulate emissions of a direct injection gasoline engine were investigated. This was done by running the engine with reference gasoline at four different loads and then switching to hydrogen or methane port fuel operation and comparing the resulting particulate emissions and their size distribution. Differences in the combustion characteristics of hydrogen and gasoline were accounted for by diluting the inlet air with nitrogen and matching the pressure or heat release traces to those of gasoline operation. Methane operation is expected to generate particulate emissions lower by several orders of magnitude compared to gasoline and hydrogen does not contribute to carbon soot formation because of the lack of carbon atoms in the molecule. Thus, any remaining particulate emissions at hydrogen gas operation must arise from non fuel related sources, e.g. from lubrication oil, metal abrasion or inlet air.
Journal Article

Direct Coil Cooling of a High Performance Switched Reluctance Machine (SRM) for EV/HEV Applications

2015-04-14
2015-01-1209
This paper presents the development of a novel direct coil cooling approach which can enable high performance for electric traction motor, and in further significantly reduce motor losses. The proposed approach focuses on bypassing critical thermal resistances in motor by cooling coils directly in stator slots with oil flow. Firstly, the basic configuration and features are shown: sealed stator slots to air gap, pressure reservoirs on both side of the slots and slot channels for oil flow. The key to enhance thermal performance of the motor here is based on introducing fluid guiding structure in the slot channels. Next, heat transfer in the channel with guiding structure is investigated by CFD and compared with bare slot channel without guiding structure. For studying the effectiveness of proposed cooling concept, numerical analysis is conducted to compare it with HEV favored oil impingement cooling.
Journal Article

Predictive Multi-Objective Operation Strategy Considering Battery Cycle Aging for Hybrid Electric Vehicles

2018-04-03
2018-01-1011
Due to the new CO2 targets for vehicles, electrification of powertrains and operation strategies for electrified powertrains have drawn more attention. This article presents a predictive multi-objective operation strategy for hybrid electric vehicles (HEVs), which simultaneously minimizes the fuel consumption and the cycle aging of traction batteries. This proposed strategy shows better performance by using predictive information and high robustness to inaccuracy of predictive information. In this work, the benefits of the developed operation strategies are demonstrated in a strong hybrid electric vehicle (sHEV) with P2-configuration. For the cycle aging of a lithium-ion battery, an empirical model is built up with Gaussian processes based on experimental data.
Technical Paper

Numerical Investigation and Experimental Comparison of ECN Spray G at Flash Boiling Conditions

2020-04-14
2020-01-0827
Fuel injection is a key process influencing the performance of Gasoline Direct Injection (GDI) Engines. Injecting fuel at elevated temperature can initiate flash boiling which can lead to faster breakup, reduced penetration, and increased spray-cone angle. Thus, it impacts engine efficiency in terms of combustion quality, CO2, NOx and soot emission levels. This research deals with modelling of flash boiling processes occurring in gasoline fuel injectors. The flashing mass transfer rate is modelled by the advanced Hertz-Knudsen model considering the deviation from the thermodynamic-equilibrium conditions. The effect of nucleation-site density and its variation with degree of superheat is studied. The model is validated against benchmark test cases and a substantiated comparison with experiment is achieved.
Journal Article

High Performance Cooling and EGR Systems as a Contribution to Meeting Future Emission Standards

2008-04-14
2008-01-1199
In relation to further tightening of the emissions legislation for on-road heavy duty Diesel engines, the future potential of cooled exhaust gas recirculation (EGR) as a result of developments in the cooling systems of such engines has been evaluated. Four basic engine concepts were investigated: an engine with SCR exhaust gas aftertreatment for control of the nitrogen oxides (NOx), an engine with cooled EGR and particulate (PM) filtration, an engine with low pressure EGR and PM filtration and an engine with two stage low temperature cooled EGR also with a particulate filter. A 10.5 litre engine was calibrated and tested under conditions representative for each concept, such that 1.7 g/kWh (1.3 g/bhp-hr) NOx could be achieved over the ESC and ETC. This corresponds to emissions 15% below the Euro 5 legislation level.
Journal Article

Estimation of Cylinder-Wise Combustion Features from Engine Speed and Cylinder Pressure

2008-04-14
2008-01-0290
Advanced engine control and diagnosis strategies for internal combustion engines need accurate feedback information from the combustion engine. The feedback information can be utilized to control combustion features which allow the improvement of engine's efficiency through real-time control and diagnosis of the combustion process. This article describes a new method for combustion phase and IMEP estimation using one in-cylinder pressure and engine speed. In order to take torsional deflections of the crankshaft into account a gray-box model of the crankshaft is identified by subspace identification. The modeling accuracy is compared to a stiff physical crankshaft model. For combustion feature estimation, the identified MISO (multiple input single output) system is inverted. Experiments for a four-cylinder spark-ignition engine show the superior performance of the new method for combustion feature estimation compared to a stiff model approach.
Journal Article

Diesel Lubricity Requirements of Future Fuel Injection Equipment

2009-04-20
2009-01-0848
This paper looks at the underlying fundamentals of diesel fuel system lubrication for the highly-loaded contacts found in fuel injection equipment like high-pressure pumps. These types of contacts are already occurring in modern systems and their severity is likely to increase in future applications due to the requirement for increased fuel pressure. The aim of the work was to characterise the tribological behavior of these contacts when lubricated with diesel fuel and diesel fuel treated with lubricity additives and model nitrogen and sulphur compounds of different chemical composition. It is essential to understand the role of diesel fuel and of lubricity additives to ensure that future, more severely-loaded systems, will be free of any wear problem in the field.
Journal Article

Procedure for Determining the Allowable Particle Contamination for Diesel Fuel Injection Equipment (FIE)

2009-04-20
2009-01-0870
Increasing injection pressures together with Diesel fuel lubricated Common Rail pumps replacing oil lubricated systems demand a more sophisticated investigation of robustness and durability against particle contamination of fuel. The established way of requiring filtration efficiency levels per lab standard is not significant enough if we look at variable factors like vibration of the fuel filter and viscosity of the fuel. Because these and other factors tremendously influence filtration efficiency, future Diesel FIE cleanliness requirements will need to define an allowable contamination limit downstream of the filter. More precisely, this is not a scalar limit but a contamination collective that considers the varying vehicle filtration and operating environment. This paper describes a procedure for defining allowable contamination limits of the FIE components. The procedure includes sensitivity, robustness and “key life” tests.
Journal Article

Advanced Combustion System Analyses on a 125cc Motorcycle Engine

2011-11-08
2011-32-0557
Environmental consciousness and tightening emissions legislation push the market share of electronic fuel injection within a dynamically growing world wide small engines market. Similar to automotive engines during late 1980's, this opens up opportunities for original equipment manufacturers (OEM) and suppliers to jointly advance small engines performance in terms of fuel economy, emissions, and drivability. In this context, advanced combustion system analyses from automotive engine testing have been applied to a typical production motorcycle small engine. The 125cc 4-stroke, 2-valve, air-cooled, single-cylinder engine with closed-loop lambda-controlled electronic port fuel injection was investigated in original series configuration on an engine dynamometer. The test cycle fuel consumption simulation provides reasonable best case fuel economy estimates based on stationary map fuel consumption measurements.
Journal Article

Compact Engine Architecture for Best Fuel Efficiency and High Performance - Challenge or Contradiction

2011-11-08
2011-32-0595
The world of automotive engineering shows a clear direction for upcoming development trends. Stringent fleet average fuel consumption targets and CO2 penalties as well as rising fuel prices and the consumer demand to lower operating costs increases the engineering efforts to optimize fuel economy. Passenger car engines have the benefit of higher degree of technology which can be utilized to reach the challenging targets. Variable valve timing, downsizing and turbo charging, direct gasoline injection, highly sophisticated operating strategies and even more electrification are already common technologies in the automotive industry but can not be directly carried over into a motorcycle application. The major differences like very small packaging space, higher rated speeds, higher power density in combination with lower production numbers and product costs do not allow implementation such high of degree of advanced technology into small-engine applications.
X