Refine Your Search

Topic

Search Results

Viewing 1 to 17 of 17
Journal Article

Electro-Thermal Modeling of a Lithium-ion Battery System

2010-10-25
2010-01-2204
Lithium-ion (Li-ion) batteries are becoming widely used high-energy sources and a replacement of the Nickel Metal Hydride batteries in electric vehicles (EV), hybrid electric vehicles (HEV) and plug-in hybrid electric vehicles (PHEV). Because of their light weight and high energy density, Li-ion cells can significantly reduce the weight and volume of the battery packs for EVs, HEVs and PHEVs. Some materials in the Li-ion cells have low thermal stabilities and they may become thermally unstable when their working temperature becomes higher than the upper limit of allowed operating temperature range. Thus, the cell working temperature has a significant impact on the life of Li-ion batteries. A proper control of the cell working temperature is crucial to the safety of the battery system and improving the battery life. This paper outlines an approach for the thermal analysis of Li-ion battery cells and modules.
Journal Article

Combustion Characteristics of a 3000 Bar Diesel Fuel System on a Single Cylinder Research Engine

2015-09-29
2015-01-2798
Modern diesel systems have come to rely on fuel systems with the capacity for high injection pressures. The benefits of such high pressures include improved tolerance for EGR, reduced emissions and improved performance. Current production fuel systems have typical capacities to 2500 bar, when a decade ago 1800 bar was a typical limit. Following the trend, this paper investigates the effect of rail pressures up to 3000 bar on a 1.5L single cylinder research engine. The injector nozzles tested include two variations in flow rate, the number of holes, and spray cone angle. In addition to fuel rail pressure, the effects of intake swirl, excess-air ratio, EGR, and injection timing are evaluated at speed and load points representative of A100, B100, and C100 test conditions of the U.S. EPA on-highway 13 Mode test cycle.
Journal Article

Thermal Characterization of a Li-ion Battery Module Cooled through Aluminum Heat-Sink Plates

2011-09-13
2011-01-2248
The temperature distribution is studied theoretically in a battery module stacked with 12 high-power Li-ion pouch cells. The module is cooled indirectly with ambient air through aluminum heat-sink plates or cooling plates sandwiched between each pair of cells in the module. Each of the cooling plates has an extended cooling fin exposed in the cooling air channel. The cell temperatures can be controlled by changing the air temperature and/or the heat transfer coefficient on the cooling fin surfaces by regulating the air flow rate. It is found that due to the high thermal conductivity and thermal diffusivity of the cooling plates, heat transfer of the cooling plate governs the cell temperature distribution by spreading the cell heat over the entire cell surface. Influence of thermal from the cooling fins is also simulated.
Journal Article

An Analysis of a Lithium-ion Battery System with Indirect Air Cooling and Warm-Up

2011-09-13
2011-01-2249
Ideal operation temperatures for Li-ion batteries fall in a narrow range from 20°C to 40°C. If the cell operation temperatures are too high, active materials in the cells may become thermally unstable. If the temperatures are too low, the resistance to lithium-ion transport in the cells may become very high, limiting the electrochemical reactions. Good battery thermal management is crucial to both the battery performance and life. Characteristics of various battery thermal management systems are reviewed. Analyses show that the advantages of direct and indirect air cooling systems are their simplicity and capability of cooling the cells in a battery pack at ambient temperatures up to 40°C. However, the disadvantages are their poor control of the cell-to-cell differential temperatures in the pack and their capability to dissipate high cell generations.
Journal Article

Thermal Analysis of a High-Power Lithium-Ion Battery System with Indirect Air Cooling

2012-04-16
2012-01-0333
Thermal behavior of a lithium-ion (Li-ion) battery module for hybrid electrical vehicle (HEV) applications is analyzed in this study. The module is stacked with 12 high-power pouch Li-ion battery cells. The cells are cooled indirectly with air through aluminum fins sandwiched between each two cells in the module, and each of the cooling fins has an extended cooling surface exposed in the cooling air flow channel. The cell temperatures are analyzed using a quasi-dimensional model under both the transient module load in a user-defined cycle for the battery system utilizations and an equivalent continuous load in the cycle. The cell thermal behavior is evaluated with the volume averaged cell temperature and the cell heat transfer is characterized with resistances for all thermal links in the heat transfer path from the cell to the cooling air. Simulations results are compared with measurements. Good agreement is observed between the simulated and measured cell temperatures.
Journal Article

Maneuver-Based Battery-in-the-Loop Testing - Bringing Reality to Lab

2013-04-08
2013-01-0157
The increasing numbers of hybrid electric and full electric vehicle models currently in the market or in the pipeline of automotive OEMs require creative testing mechanisms to drive down development costs and optimize the efficiency of these vehicles. In this paper, such a testing mechanism that has been successfully implemented at the US Environmental Protection Agency National Vehicle and Fuel Emissions Laboratory (EPA NVFEL) is described. In this testing scheme, the units-under-test consist of a battery pack and its associated battery management system (BMS). The remaining subsystems, components, and environment of the vehicle are virtual and modeled in high fidelity.
Journal Article

A Thermodynamic Model for a Single Cylinder Engine with Its Intake/Exhaust Systems Simulating a Turbo-Charged V8 Diesel Engine

2011-04-12
2011-01-1149
In this paper, a thermodynamic model is discussed for a single cylinder diesel engine with its intake and exhaust systems simulating a turbo-charged V8 diesel engine. Following criteria are used in determination of the gas exchange systems of the single cylinder engine (SCE): 1) the level of pressure fluctuations in the intake and exhaust systems should be within the lower and upper bounds of those simulated by the thermodynamic model for the V8 engine and patterns of the pressure waves should be similar; 2) the intake and exhaust flows should be reasonably close to those of the V8 engine; 3) the cylinder pressures during the combustion and gas exchange should be reasonably close to those of the V8 engine under the same conditions for the valve timing, fuel injection, rate of heat release and in-cylinder heat transfer. The thermodynamic model for the SCE is developed using the 1D engine thermodynamic simulation tool AVL BOOST.
Journal Article

Characterizing Thermal Runaway of Lithium-ion Cells in a Battery System Using Finite Element Analysis Approach

2013-04-08
2013-01-1534
In this study, thermal runaway of a 3-cell Li-ion battery module is analyzed using a 3D finite-element-analysis (FEA) method. The module is stacked with three 70Ah lithium-nickel-manganese-cobalt (NMC) pouch cells and indirectly cooled with a liquid-cooled cold plate. Thermal runaway of the module is assumed to be triggered by the instantaneous increase of the middle cell temperature due to an abusive condition. The self-heating rate for the runaway cell is modeled on the basis of Accelerating Rate Calorimetry (ARC) test data. Thermal runaway of the battery module is simulated with and without cooling from the cold plate; with the latter representing a failed cooling system. Simulation results reveal that a minimum of 165°C for the middle cell is needed to trigger thermal runaway of the 3-cell module for cases with and without cold plate cooling.
Journal Article

Effect of Heat of Vaporization, Chemical Octane, and Sensitivity on Knock Limit for Ethanol - Gasoline Blends

2012-04-16
2012-01-1277
Ethanol and other high heat of vaporization (HoV) fuels result in substantial cooling of the fresh charge, especially in direct injection (DI) engines. The effect of charge cooling combined with the inherent high chemical octane of ethanol make it a very knock resistant fuel. Currently, the knock resistance of a fuel is characterized by the Research Octane Number (RON) and the Motor Octane Number (MON). However, the RON and MON tests use carburetion for fuel metering and thus likely do not replicate the effect of charge cooling for DI engines. The operating conditions of the RON and MON tests also do not replicate the very retarded combustion phasing encountered with modern boosted DI engines operating at low-speed high-load. In this study, the knock resistance of a matrix of ethanol-gasoline blends was determined in a state-of-the-art single cylinder engine equipped with three separate fuel systems: upstream, pre-vaporized fuel injection (UFI); port fuel injection (PFI); and DI.
Technical Paper

OBD Algorithms: Model-based Development and Calibration

2007-10-30
2007-01-4222
The OBD II and EOBD legislation have significantly increased the number of system components that have to be monitored in order to avoid emissions degradation. Consequently, the algorithm design and the related calibration effort is becoming more and more challenging. Because of decreasing OBD thresholds, the monitoring strategy accuracy, which is tightly related with the components tolerances and the calibration quality, has to be improved. A model-based offline simulation of the monitoring strategies allows consideration of component and sensor tolerances as well as a first calibration optimization in the early development phase. AVL applied and improved a methodology that takes into account this information, which would require a big effort using testbed or vehicle measurements. In many cases a component influence analysis is possible before hardware is available for testbed measurements.
Technical Paper

The New Ford 6.7L V-8 Turbocharged Diesel Engine

2010-04-12
2010-01-1101
A new diesel engine, called the 6.7L Power Stroke® V-8 Turbocharged Diesel, and code named "Scorpion" has been designed and developed by Ford Motor Company for the full-size pickup truck and light commercial vehicle markets. It incorporates the latest design technology to meet 2010 model year emission regulations for both chassis and dynamometer-based certifications, and is compatible with up to B20 biodiesel fuel. The engine is an entirely new 90 degree V-8 design featuring inboard exhaust, piezo common rail fuel injection, a new dual compressor wheel turbocharger, and dual loop cooling systems. The 6.7L is Ford's first diesel engine designed for the North American pickup and light commercial truck market.
Technical Paper

Comparative Study of Thermal Characteristics of Lithium-ion Batteries for Vehicle Applications

2011-04-12
2011-01-0668
Lithium ion batteries can be developed for vehicle applications from high power specification to high energy specification. Thermal response of a battery cell is the main factor to be considered for battery selection in the design of an electrified vehicle because some materials in the cells have low thermal stability and they may become thermally unstable when their working temperature becomes higher than the upper limit of allowed operating range. In this paper the thermal characteristics of different sizes and forms of commercially available batteries is investigated through electro-thermal analysis. The relation between cell capacity and cell internal resistance is also studied. The authors find that certain criteria can be defined for battery selection for electric vehicles, hybrid electric vehicles and plug-in hybrid electric vehicles. These criteria can be served as design guidelines for battery development for vehicle applications.
Technical Paper

A Model-Based Analysis on Size Distribution and Rate of Evaporation for Fuel Drops in a Gasoline Spray in the Engine

2012-04-16
2012-01-1264
Good understanding of fuel sprays in the engine cylinder is crucial to optimizing the operation of direct injection gasoline engines. In this paper, a detailed analysis is conducted on direct gasoline injection sprays from a multi-hole injector. Penetrations and angles of the sprays are characterized with a homogeneous model for the fuel spray. The drop size distributions in the sprays are analyzed using an empirical distribution model. Predicted spray penetrations, spray angles, and drop size distributions under three different injection pressures are compared with the measurements for injection pressures = 40, 100 and 150 bar and good agreements are observed. Transient evaporation rates are also studied for fuel drops in an environment simulating the cylinder condition during the intake stroke of a direct injection gasoline engine.
Technical Paper

Reducing Temperature Gradients in High-Power, Large-Capacity Lithium-Ion Cells through Ultra-High Thermal Conductivity Heat Spreaders Embedded in Cooling Plates for Battery Systems with Indirect Liquid Cooling

2013-04-08
2013-01-0234
For lithium-ion battery systems assembled with high-capacity, high-power pouch cells, the cells are commonly cooled with thin aluminum cooling plates in contact with the cells. The cooling plates extract the cell heat and dissipate it to a cooling medium (air or liquid). During the pack utilizations with high-pulse currents, large temperature gradients along the cell surfaces can be encountered as a result of non-uniform distributions of the ohmic heat generated in the cells. The non-uniform cell temperature distributions can be significant for large-size cells. Maximum cell temperatures typically occur near the cell terminal tabs as a result of the ohmic heat of the terminal tabs and connecting busbars and the high local current densities. In this study, a new cooling plate is proposed for improving the uniformity in temperature distributions for the cells with large capacities.
Technical Paper

Li-Ion Battery Pack Characterization and Equivalent Electrical Circuit Model Development

2014-04-01
2014-01-1839
This paper outlines the characterization of a Li-Ion Iron Phosphate battery pack with nominal voltage of 700V as well as the modeling of this pack as an equivalent electrical circuit (EEC) for the purpose of vehicle simulations. For a higher level of fidelity and accuracy, the equivalent circuit is initially modeled as an R-2RC circuit which consists of a voltage source with one resistor (R) and two resistor-capacitor (RC) branches. In this modeling effort, first, several open circuit voltage (OCV) determination methods in the literature are benchmarked and state-of-charge (SOC) dependent OCV curve which is used in the voltage source of the EEC model is derived. Then, two methods of parameter estimation of the EEC are developed for both step current and dynamic current profiles. The first estimation method is applicable to discharge or charge step currents and relies mostly on the relaxation portion of the battery response and involves some manual calibration.
Technical Paper

Characterizing Thermal Behavior of an Air-Cooled Lithium-Ion Battery System for Hybrid Electrical Vehicle Applications Using Finite Element Analysis Approach

2013-04-08
2013-01-1520
Thermal behavior of a Lithium-ion (Li-ion) battery module under a user-defined cycle corresponding to hybrid electrical vehicle (HEV) applications is analyzed. The module is stacked with 12 high-power 8Ah pouch Li-ion battery cells connected in series electrically. The cells are cooled indirectly with air through aluminum cooling plate sandwiched between each pair of cells. The cooling plate has extended cooling surfaces exposed in the cooling air flow channel. Thermal behavior of the battery system under a user specified electrical-load cycle for the target hybrid vehicle is characterized with the equivalent continuous load profile using a 3D finite element analysis (FEA) model for battery cooling. Analysis results are compared with measurements. Good agreement is observed between the simulated and measured cell temperatures. Improvement of the cooling system design is also studied with assistance of the battery cooling analyses.
Technical Paper

Ford 2011 6.7L Power Stroke® Diesel Engine Combustion System Development

2011-04-12
2011-01-0415
A new diesel engine, called the 6.7L Power Stroke® V-8 Turbo Diesel, and code named "Scorpion," was designed and developed by Ford Motor Company for the full-size pickup truck and light commercial vehicle markets. The combustion system includes the piston bowl, swirl level, number of nozzle holes, fuel spray angle, nozzle tip protrusion, nozzle hydraulic flow, and nozzle-hole taper. While all of these parameters could be explored through extensive hardware testing, 3-D CFD studies were utilized to quickly screen two bowl concepts and assess their sensitivities to a few of the other parameters. The two most promising bowl concepts were built into single-cylinder engines for optimization of the rest of the combustion system parameters. 1-D CFD models were used to set boundary conditions at intake valve closure for 3-D CFD which was used for the closed-cycle portion of the simulation.
X