Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

Impact of Engine Oil Detergent on Low Speed Pre-Ignition (LSPI) and Fuel Economy Performance

2020-04-14
2020-01-1424
Low Speed Pre-Ignition (LSPI), also referred to as Stochastic Pre-Ignition (SPI), Superknock or Megaknock is an undesirable combustion phenomenon that limits the fuel economy, drivability, emissions and durability performance of modern turbocharged gasoline engines. Numerous studies have previously reported that the frequency of LSPI is sensitive to engine oil composition. One of these drivers is the concentration of Calcium, which is usually delivered in the form of a detergent in the additive package. Switching to completely all-Magnesium detergent and/or severely limiting the concentration of Ca in the engine oil have recently been proposed as potential means to reduce LSPI. In this work, we evaluate the impact of detergent type on LSPI performance as well as on other performance that the modern engine oil needs to deliver. Particularly the impact of detergent type on Fuel Economy performance is evaluated.
Journal Article

Lubricants for (Hybrid) Electric Transmissions

2013-04-08
2013-01-0298
In electric or hybrid electric transmissions, the transmission fluids can be in contact with the parts of the electric motors, for example, electrical windings in the stators in order to efficiently cool the electric motors and to insulate the electrical parts to prevent a short circuit of the electric motors. The transmission fluids must therefore have low electrical conductivities [1,2,3,4,5,6,7,8,9]. Transmission fluids contain dispersants, which can be reaction products of hydrocarbyl substituted carboxylic acids or anhydrides and amines. These dispersants can be further post-treated with boron and phosphorus compounds to improve friction and anti-wear properties. Certain dispersants, which have nitrogen content up to 10,000 ppm by weight, and boron plus phosphorus to nitrogen ((B+P)/N) weight ratios of from 0.1 to about 0.8 : 1.0, were found to be effective to provide low electrical conductivities less than 1,700 pS/m [10].
Technical Paper

Clutch Parameter Effects on Torque and Friction Stability

2011-04-12
2011-01-0722
Approximation formulas are presented for the time response of the film thickness and torque in a wet clutch. The approximation formulas show the effects of various clutch parameters on the film thickness, the hydrodynamic torque and the asperity torque. Clutch parameters affecting the film thickness and torque include friction material characteristics, lubricant properties, the geometry of the clutch plates and the time-dependent apply pressure. The approximation formulas are obtained from heuristic curve fits of previously published and validated models. It is also shown that a positive gradient (dTf/dωslip > 0) of the friction torque, Tf, with respect to slip speed, ωslip, promotes friction stability. This stability gradient is obtained analytically using the approximation formulas so that the effects of the clutch parameters on friction stability are also shown.
Technical Paper

Fluid Effects on Shifting Clutch Friction

2016-10-17
2016-01-2206
Good shift quality in automatic transmissions is important for fuel efficiency, driver comfort, and performance. Maintaining this performance over the life of the vehicle is also important. Typically lubricant development focuses on reducing viscosity and friction in order to reduce parasitic losses. In an automatic transmission other factors are also important for good performance, primarily due to the shifting clutches and the torque converter clutch. A high level of friction is desirable for torque capacity and a steady decrease in friction as sliding speed (rpm) decreases is necessary for both good shift feel and good friction system durability over the lifetime of the vehicle. Changes in the friction system over time that result in a lowering of the friction level, particularly at higher sliding speeds, compromise the performance of both types of clutches.
Technical Paper

Continuously Variable Transmission (CVT) Fuel Economy

2017-10-08
2017-01-2355
Due to its simplicity and fuel economy benefit, continuously variable transmission (CVT) technology has gained a lot of attention in recent years. Market penetration of CVT technology is increasing rapidly compared to step-type automatic transmission technology. OEMs, Tier 1 suppliers, and lubricant suppliers are working to further improve the fuel economy benefit of CVTs. As a lubricant supplier, we want to understand the effects of fluid properties on CVT fuel economy (FE). We have formulated fluids that had KV100 ranges from 2-4 cSt to 7-9 cSt with various types and viscosities of base oils. Wide ranges of viscosity indexes, steel-on-steel friction, and other properties were tested. Full vehicle fuel economy tests were performed in a temperature controlled environment with a robotic driver. The test revealed that there was more than 3% overall FE variation compared to a reference fluid.
Technical Paper

Development of Next Generation Gear Oil for Heavy Duty Vehicles

2017-03-28
2017-01-0890
Heavy duty vehicles take a large role in providing global logistics. It is required to have both high durability and reduced CO2 from the viewpoint of global environment conservation. Therefore lubricating oils for transmission and axle/differential gear box are required to have excellent protection and longer drain intervals. However, it is also necessary that the gear oil maintain suitable friction performance for the synchronizers of the transmission. Even with such good performance, both transmission and axle/differential gear box lubricants must balance cost and performance, in particular in the Asian market. The development of gear oil additives for high reliability gear oil must consider the available base oils in various regions as the additive is a global product. In many cases general long drain gear oils for heavy duty vehicles use the group III or IV base oils, but it is desirable to use the group I/II base oils in terms of cost and availability.
Technical Paper

Testing Wet Clutch Systems for Anti-Shudder Performance

2020-04-14
2020-01-0560
The wet clutch system (WCS) is a complex combination of friction plates, separator plates and fluid (lubricant). The basic function of the WCS is to transfer torque under various operating conditions such as slipping, shifting, start/launch and/or torque converter clutch (TCC) operation. Under these conditions the slope of the coefficient of friction (μ or COF) versus slip speed (μ-v) curve must be positive to prevent shudder of the WCS, a highly undesirable condition in the lubricated friction system. An extended durability duty cycle test procedure is required to evaluate the WCS during which the μ-v curve is monitored for a negative slope, a condition indicating the potential for shudder. The friction plates, separator plates, and lubricant must be tested together and remain together during the test to be properly evaluated as a WCS.
Technical Paper

The Effect of Friction Modifiers and DI Package on Friction Reduction Potential of Next Generation Engine Oils: Part II Aged Oils

2019-04-02
2019-01-0303
Engine oil plays an important role in improving fuel economy of vehicles by reducing frictional losses in an engine. Our previous investigation explored the friction reduction potential of next generation engine oils by looking into the effects of friction modifiers and dispersant Inhibitor packages when engine oil was fresh. However, engine oil starts aging the moment engine start firing because of high temperature and interactions with combustion gases. Therefore, it is more relevant to investigate friction characteristics of aged oils. In this investigation, oils were aged for 5000 miles in taxi cab application.
Journal Article

A General Method for Fouling Injectors in Gasoline Direct Injection Vehicles and the Effects of Deposits on Vehicle Performance

2017-10-08
2017-01-2298
The ubiquity of gasoline direct injection (GDI) vehicles has been rapidly increasing across the globe due to the increasing demand for fuel efficient vehicles. GDI technology offers many advantages over conventional port fuel injection (PFI) engines, such as improvements in fuel economy and higher engine power density; however, GDI technology presents unique challenges as well. GDI engines can be more susceptible to fuel injector deposits and have higher particulate emissions relative to PFI engines due to the placement of the injector inside the combustion chamber. Thus, the need for reliable test protocols to develop next generation additives to improve GDI vehicle performance is paramount. This work discloses a general test method for consistently fouling injectors in GDI vehicles and engines that can accommodate multiple vehicle/engine types, injector designs, and drive cycles, which allows for development of effective GDI fuel additives.
Journal Article

Impact of Particle Characteristics and Engine Conditions on Deposit-Induced Pre-Ignition and Superknock in Turbocharged Gasoline Engines

2017-10-08
2017-01-2345
Low Speed Pre-Ignition (LSPI), also referred to as superknock or mega-knock is an undesirable turbocharged engine combustion phenomenon limiting fuel economy, drivability, emissions and durability performance. Numerous researchers have previously reported that the frequency of Superknock is sensitive to engine oil and fuel composition as well as engine conditions in controlled laboratory and engine-based studies. Recent studies by Toyota and Tsinghua University have demonstrated that controlled induction of particles into the combustion chamber can induce pre-ignition and superknock. Afton and Tsinghua recently developed a multi-physics approach which was able to realistically model all of the elementary processes known to be involved in deposit induced pre-ignition. The approach was able to successfully simulate deposit induced pre-ignition at conditions where the phenomenon has been experimentally observed.
Journal Article

Formation of Intake Valve Deposits in Gasoline Direct Injection Engines

2016-10-17
2016-01-2252
Gasoline direct-injection (GDI) engines have a well-known propensity to form intake valve deposits (IVD), regardless of operator service, engine architecture, or cylinder configuration. Due to the lack of a fuel-washing process that is typical of Port Fuel Injected (PFI) engines, the deposits steadily accumulate over time and can lead to deterioration in combustion, unstable operation, valve-sticking, or engine failure. Vehicles using these engines are often forced to undergo expensive maintenance to mechanically remove the deposits, which eventually re-form. The deposit formation process has not been well-characterized and there is no standardized engine test to study the impact of fuel or lubricant formulation variables. To meet this need, a proprietary vehicle-based GDI-IVD test that is both repeatable and responsive to chemistry has been developed.
X