Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Enhanced Extra-Vehicular Activity Operations Through Custom Human Modeling Analysis

1997-07-01
972457
To sustain the extra-vehicular activity (EVA) rate required to assemble and maintain the International Space Station (ISS), we must enhance our ability to plan, train for, and execute EVAs. An underlying analysis capability must be in place to ensure EVA access to all external worksites either as a starting point for ground training, to generate information needed for on-orbit training, or to react quickly to develop contingency EVA plans, techniques, and procedures. This paper describes a potential flight experiment for application of custom human modeling analysis to plan and train for EVAs to enhance space station functionality and usability through assembly and operation.
Technical Paper

Expert System Based Tool for Advanced Life Support System Optimization - A Mission Analysis Perspective

1993-07-01
932060
An expert system based Environmental Control and Life Support System (ECLSS) trade study tool is under development which calculates resource requirements and penalties for given system configurations and mission definition parameters. The user friendly, graphical software application allows important ECLSS resources such as power, mass, volume, resupply mass (consumable and expendable), heat rejection and ultimately cost to be analyzed in an efficient hierarchical manner. Hardware resources are calculated using scaling algorithms specific to each technology, based on existing hardware where possible. Fluid mass balances are tracked and summarized as fluids input into the system and waste output leaving the system. This tool will aid in technology selection and optimization of transportation vehicle or surface habitat designs.
Technical Paper

User Interface Integration for Space Station Freedom

1993-07-01
932038
The unique development environment of NASA's Space Station Freedom (SSF) creates numerous challenges to the design of a common user interface for operating the spacecraft. Astronauts on board SSF will utilize multi-purpose workstations as their primary command and control interface to the vehicle. With the exception of some dedicated hardware controls, the vast majority of the workstation user interface will be implemented in software. The specification and design of the SSF user interface requires the synthesis of on-orbit operational requirements with multiple systems' functional requirements, all of which emanate from geographically and organizationally distributed entities. Human factors requirements as well as constraints imposed by the SSF Displays and Controls (D&C) system architecture are additional considerations.
Technical Paper

Modeling and Validation of the Ambient and Variable Pressure Growth Chamber Models

1993-07-01
932171
The development of regenerative life support systems (RLSS) to support long duration manned space exploration is of great importance. To design future chambers effectively, it is necessary to model both chamber performance and plant growth in current systems. The Johnson Space Center RLSS test bed, which consists of the Variable Pressure Growth Chamber (VPGC) and the Ambient Pressure Growth Chamber (APGC), is a facility that is being used to investigate plant growth and support hardware integration. Detailed and simplified models of the VPGC and APGC have been developed to investigate system performance and response to changes in loading as well as to study long-term plant growth under varying environmental conditions, including temperature, light level, CO2 level, dew point or relative humidity, and photoperiod. To support these studies, models of two crops, lettuce and wheat, have also been developed and integrated into the detailed and simplified simulations of each chamber.
Technical Paper

Lunar Base Life Support System and Site Selection

1994-06-01
941457
The selection of a life support system for a lunar base depends on many interrelated factors, both programmatic and technical. Many factors are identifiable through the application of a systems engineering approach to the lunar base design, in which base and mission requirements are determined. In addition, there is a range of evolving technology options whose cost and maturity affect their potential for inclusion in base designs. Results of ongoing lunar base design are presented with emphasis on the selection of promising approaches for advanced life support systems that decrease overall cost for a single, permanently inhabited lunar base. We identify critical technology areas that inhibit the selection of closed life support systems and propose alternative basing scenarios to alleviate development and operational costs. In particular, we quantify the cost savings associated with establishing a base at a lunar pole in a region of permanent sunlight.
Technical Paper

Operations and Staff Support for Chamber Testing of Advanced Life Support Systems

1995-07-01
951487
The successes of the long-duration MDA/NASA test programs for advanced life-support systems conducted prior to 1971 were highly dependent on the selection and training of both the test crews that remained inside the test chamber throughout the test periods and the outside operating staff. The operating staff was responsible for overall test performance, crew safety monitoring, operation and maintenance of the test facilities, and collection and maintenance of data. A selection, training, and certification program was developed and performed to ensure operating staff members had the correct technical skills and could work effectively together with the inside crew. A training program was designed to ensure that each selected operating staff member was capable of performing all assigned functions and was sufficiently cross-trained to serve at other positions on a contingency basis, if needed.
Technical Paper

Computer Modeling and Experimental Investigations of a Regenerative Life Support Waste Water Bioreactor

1995-07-01
951463
Computer models are currently being developed by NASA and major aerospace companies to characterize regenerative life support waste water reclamation bioreactors. Detailed models increase understanding of complex processes within the bioreactors and predict performance capabilities over a wide range of operating parameters. Bench-top scale bioreactors are contributing to the development and validation of these models. The purpose of the detailed bioreactor model is to simulate the complex water purification processes as accurately as possible by minimizing the use of simplifying assumptions and empirical relationships. Fundamental equations of mass transport and microbial kinetics were implemented in a finite-difference model structure to maximize accuracy and adaptability to various bioreactor configurations. The model development is based upon concepts and data from the available literature and data from the bench top bioreactor investigations.
Technical Paper

Advancements in Regenerative Life Support Waste Water Bioprocessing Technology

1996-07-01
961572
Bioreactor technology for waste water reclamation in a regenerative life support system (RLSS) is currently being developed by a team of NASA and major aerospace companies. To advance this technology, several activities are being performed concurrently; these include conducting small-scale studies and developing computer models. Small-scale studies are being performed to characterize and enhance the bioprocesses occurring within the bioreactor. New bioreactor configurations have been investigated which improved total organic carbon degradation as well as nitrification, the polishing step which converts nitrogenous wastes into forms that are easily removable from the water. Small-scale studies have also been performed using an activated sludge reactor demonstrating that TOC reduction and nitrification can occur in a single reactor. Computer models have been developed to guide the laboratory studies and to assist in full-scale system design.
X