Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Journal Article

Simulation Methodology for Consideration of Injection System on Engine Noise Contribution

2010-06-09
2010-01-1410
The target of the investigation is the particular influence of a fuel injection system and its components as a noise source in automotive engines. The applied methodology is demonstrated on an automotive Inline 4-cylinder Diesel engine using a common rail system. This methodology is targeted as an extension of a typical standard acoustic simulation approach for combustion engines. Such approaches basically use multi-body dynamic simulation with interacting FEM based flexible structures, where the main excitation crank train, timing drive, valve train system and piston secondary motion are considered. Within the extended approach the noise excitation of the hydraulic and mechanical parts of the entire fuel system is calculated and subsequently considered within the multi-body dynamic simulation for acoustic evaluation of structural vibrations.
Journal Article

Integrated 1D/2D/3D Simulation of Fuel Injection and Nozzle Cavitation

2013-09-08
2013-24-0006
To promote advanced combustion strategies complying with stringent emission regulations of CI engines, computational models have to accurately predict the injector inner flow and cavitation development in the nozzle. This paper describes a coupled 1D/2D/3D modeling technique for the simulation of fuel flow and nozzle cavitation in diesel injection systems. The new technique comprises 1D fuel flow, 2D multi-body dynamics and 3D modeling of nozzle inner flow using a multi-fluid method. The 1D/2D model of the common rail injector is created with AVL software Boost-Hydsim. The computational mesh including the nozzle sac with spray holes is generated with AVL meshing tool Fame. 3D multi-phase calculations are performed with AVL software FIRE. The co-simulation procedure is controlled by Boost-Hydsim. Initially Hydsim performs a standalone 1D simulation until the needle lift reaches a prescribed tolerance (typically 2 to 5 μm).
Journal Article

Chevrolet Sequel: Reinventing the Automobile

2008-04-14
2008-01-0421
Sequel is the third vehicle in GM's Reinvention of the Automobile and is the first zero emissions passenger vehicle to drive more than 300 miles on public roads without refueling or recharging. It is purpose-built around the hydrogen storage and fuel cell systems and uses the skateboard principle introduced in the Autonomy vision concept and the Hy-wire proof-of-concept vehicles. Sequel's aluminum structure, Flexray controlled chassis-by-wire systems and AWD system comprising a single front electric motor and two rear wheel motors make it, perhaps, the most technically advanced automobile ever built. The paper describes the vehicle's design and performance characteristics.
Journal Article

Late Intake Valve Closing as an Emissions Control Strategy at Tier 2 Bin 5 Engine-Out NOx Level

2008-04-14
2008-01-0637
A fully flexible valve actuation (FFVA) system was developed for a single cylinder research engine to investigate high efficiency clean combustion (HECC) in a diesel engine. The main objectives of the study were to examine the emissions, performance, and combustion characteristics of the engine using late intake valve closing (LIVC) to determine the benefits and limitations of this strategy to meet Tier 2 Bin 5 NOx requirements without after-treatment. The most significant benefit of LIVC is a reduction in particulates due to the longer ignition delay time and a subsequent reduction in local fuel rich combustion zones. More than a 95% reduction in particulates was observed at some operating conditions. Combustion noise was also reduced at low and medium loads due to slower heat release. Although it is difficult to assess the fuel economy benefits of LIVC using a single cylinder engine, LIVC shows the potential to improve the fuel economy through several approaches.
Journal Article

Gasoline Fuel Injector Spray Measurement and Characterization - A New SAE J2715 Recommended Practice

2008-04-14
2008-01-1068
With increasingly stringent emissions regulations and concurrent requirements for enhanced engine thermal efficiency, a comprehensive characterization of the automotive gasoline fuel spray has become essential. The acquisition of accurate and repeatable spray data is even more critical when a combustion strategy such as gasoline direct injection is to be utilized. Without industry-wide standardization of testing procedures, large variablilities have been experienced in attempts to verify the claimed spray performance values for the Sauter mean diameter, Dv90, tip penetration and cone angle of many types of fuel sprays. A new SAE Recommended Practice document, J2715, has been developed by the SAE Gasoline Fuel Injection Standards Committee (GFISC) and is now available for the measurement and characterization of the fuel sprays from both gasoline direct injection and port fuel injection injectors.
Journal Article

Development of the Combustion System for General Motors' 3.6L DOHC 4V V6 Engine with Direct Injection

2008-04-14
2008-01-0132
General Motors' 3.6L DOHC 4V V6 engine has been upgraded to provide substantial improvements in performance, fuel economy, and emissions for the 2008 model year Cadillac CTS and STS. The fundamental change was a switch from traditional manifold-port fuel injection (MPFI) to spark ignition direct injection (SIDI). Additional modifications include enhanced cylinder head and intake manifold air flow capacities, optimized camshaft profiles, and increased compression ratio. The SIDI fuel system presented the greatest opportunities for system development and optimization in order to maximize improvements in performance, fuel economy, and emissions. In particular, the injector flow rate, orifice geometry, and spray pattern were selected to provide the optimum balance of high power and torque, low fuel consumption, stable combustion, low smoke emissions, and robust tolerance to injector plugging.
Technical Paper

Observer Design for Fuel Reforming in HCCI Engines Using a UEGO Sensor

2009-04-20
2009-01-1132
Homogeneous Charge Compression Ignition (HCCI) combustion shows a high potential of reducing both fuel consumption and exhaust gas emissions. Many works have been devoted to extend the HCCI operation range in order to maximize its fuel economy benefit. Among them, fuel injection strategies that use fuel reforming to increase the cylinder charge temperature to facilitate HCCI combustion at low engine loads have been proposed. However, to estimate and control an optimal amount of fuel reforming in the cylinder of an HCCI engine proves to be challenging because the fuel reforming process depends on many engine variables. It is conceivable that the amount of fuel reforming can be estimated since it correlates with the combustion phasing which in turn can be measured using a cylinder pressure sensor.
Technical Paper

Crank-Angle Resolved Modeling of Fuel Injection, Combustion and Emission Formation for Engine Optimization and Calibration on Real-Time Systems

2016-04-05
2016-01-0558
The present work introduces an innovative mechanistically based 0D spray model which is coupled to a combustion model on the basis of an advanced mixture controlled combustion approach. The model calculates the rate of heat release based on the injection rate profile and the in-cylinder state. The air/fuel distribution in the spray is predicted based on momentum conservation by applying first principles. On the basis of the 2-zone cylinder framework, NOx emissions are calculated by the Zeldovich mechanism. The combustion and emission models are calibrated and validated with a series of dedicated test bed data specifically revealing its capability of describing the impact of variations of EGR, injection timing, and injection pressure. A model based optimization is carried out, aiming at an optimum trade-off between fuel consumption and engine-out emissions. The findings serve to estimate an economic optimum point in the NOx/BSFC trade-off.
Technical Paper

Numerical and Experimental Analysis of Mixture Formation and Performance in a Direct Injection CNG Engine

2012-04-16
2012-01-0401
This paper presents the results of part of the research activity carried out by the Politecnico di Torino and AVL List GmbH as part of the European Community InGAS Collaborative Project. The work was aimed at developing a combustion system for a mono-fuel turbocharged CNG engine, with specific focus on performance, fuel economy and emissions. A numerical and experimental analysis of the jet development and mixture formation in an optically accessible, single cylinder engine is presented in the paper. The experimental investigations were performed at the AVL laboratories by means of the planar laser-induced fluorescence technique, and revealed a cycle-to-cycle jet shape variability that depended, amongst others, on the injector characteristics and in-cylinder backpressure. Moreover, the mixing mechanism had to be optimized over a wide range of operating conditions, under both stratified lean and homogeneous stoichiometric modes.
Technical Paper

The Impact of Emissions and Fuel Economy Requirements on Fuel Injection System and Noise of HD Diesel Engines

1998-02-01
980176
Despite the increasingly stringent emissions legislation, users and owners of commercial diesel vehicles are continually demanding that each new engine generation is more economical than the previous one. This is especially important for commercial vehicles where the majority of engines are in the 1-2ltr./cyl. class. The demands are being reflected in new engine designs with lower friction and improved structural stiffness, together with fuel systems having increased pressure capability, higher spill rates, injection rate shaping and advanced control features. These fuel system requirements have led to a variety of new fuel injection systems and in the search for increased injection pressure these fuel systems have placed greater demands on the engine, especially in areas such as the cylinder head and fuel system drive, sometimes with adverse effects on the combustion and fuel injection system induced mechanical noise.
Technical Paper

Development of a Rapid Prototyping Controller-based Full-Authority Diesel Engine Controller

2005-04-11
2005-01-1344
A rapid prototyping controller (RPC) based, full-authority, diesel control system is developed, implemented, tested and validated on FTP cycle. As rapid prototyping controller, dSPACE Autobox is coupled with a fast processor based slave for lower level I/O control and a collection of in-house designed interface cards for signal conditioning. The base software set implemented mimics the current production code for a production diesel engine. This is done to facilitate realistic and accurate comparison of production algorithms with new control algorithms to be added on future products. The engine is equipped with all the state-of-the art subsystems found in a modern diesel engine (common rail fuel injection, EGR, Turbocharger etc.).
Technical Paper

GENERAL MOTORS EXPERIMENTAL SAFETY VEHICLE-POWERTRAIN & FUEL SYSTEM

1973-02-01
730280
The Experimental Safety Vehicle powertrain and fuel system developed by General Motors in compliance with Contract DOT-OS-00095 with the U.S. Department of Transportation include several special features: a low engine accessory package to meet the front visibility down angle of 8 degrees, engine and transmission mounting for retention at high decelerations, a light aluminum engine, an over-the-rear-axle fuel tank, and a unique evaporative emission fuel pipe routing. A comprehensive test program was planned and final testing to validate contract specifications was conducted.
Technical Paper

The Hybrid Engine - Challenge between GHG-Legislation, Efficiency Targets, Product Cost and Production Boundaries

2022-03-29
2022-01-0593
Upcoming, increasingly stringent greenhouse gas (GHG) as well as emission limits demand for powertrain electrification throughout all vehicle applications. Increasing complexity of electrified powertrain architectures require an overall system approach combining component technology with integration and industrialization requirements when heading for further significant efficiency optimization of the subsystem internal combustion engine. The requirements on the combustion engine in hybrid powertrains are quite different to those in a conventional powertrain solution. Next-generation hybrid engines, with brake thermal efficiency (BTE) targets starting from 42-43% and aiming for 45% and above within the product lifecycle, require a re-thinking of the base engine architecture of current modular engine platforms. At the same time focus on the product cost and minimized additional investment demand reuse of current production, machining and assembly facilities as far as possible.
Technical Paper

New Fuel Mass Flow Meter - A Modern and Reliable Approach to Continuous and Accurate Fuel Consumption Measurement

2000-03-06
2000-01-1330
Over the past few years, the fuel mass measurement gained in importance to record the consumed fuel mass and the specific fuel consumption [g/kWh] with high accuracy. Measuring instruments, such as positive displacement meters, methods based on the burette or the Wheatstone bridge mass flow meter measure either the volumetric flow and a temperature-dependant fuel density correction is necessary or they have old technology and therefore poor accuracy and repeatability. A new-generation Coriolis sensor featuring an ideal measurement range for engine test beds but still with flow depending pressure drop has been integrated in a fuel meter to ensure that no influence is given to the engine behaviour for example after engine load change. The new Coriolis meter offers better accuracy and repeatability, gas bubble venting and easy test bed integration. For returnless fuel injection systems the fuel system supplies the fuel pressure.
Technical Paper

Crank-Angle Resolved Modeling of Fuel Injection and Mixing Controlled Combustion for Real-Time Application In Steady-State and Transient Operation

2014-04-01
2014-01-1095
The present works presents a real-time capable engine model with physical based description of the fuel injection and the combustion process. The model uses a crank-angle resolved cylinder model and a filling and emptying approach for cylinder and gas-path interaction. A common rail injection system model is developed and implemented into the real-time engine framework. The injection model calculates injection quantity and injection rate profile from the input of the ECU signals target injection pressure and injection timing. The model accounts for pressure oscillations in the injection system. A phenomenological combustion model for Diesel engines is implemented, which is based on the mixing controlled combustion modeling approach. The combustion model calculates the rate of heat release from the injection rate given by the injection model. The injection and combustion model are validated in detail against steady-state measurement data for two different passenger car sized engines.
Technical Paper

An Experimental Study of Injection and Combustion with Dimethyl Ether

2015-04-14
2015-01-0932
DiMethyl Ether (DME) has been known to be an outstanding fuel for combustion in diesel cycle engines for nearly twenty years. DME has a vapour pressure of approximately 0.5MPa at ambient temperature (293K), thus it requires pressurized fuel systems to keep it in liquid state which are similar to those for Liquefied Petroleum Gas (mixtures of propane and butane). The high vapour pressure of DME permits the possibility to optimize the fuel injection characteristic of direct injection diesel engines in order to achieve a fast evaporation and mixing with the charged gas in the combustion chamber, even at moderate fuel injection pressures. To understand the interrelation between the fuel flow inside the nozzle spray holes tests were carried out using 2D optically accessed nozzles coupled with modelling approaches for the fuel flow, cavitation, evaporation and the gas dynamics of 2-phase (liquid and gas) flows.
Technical Paper

Impact of Injection Valve Condition on Data-driven Prediction of Key Combustion Parameters Based on an Intelligent Diesel Fuel Injector for Large Engine Applications

2024-04-09
2024-01-2836
The advent of digitalization opens up new avenues for advances in large internal combustion engine technology. Key engine components are becoming "intelligent" through advanced instrumentation and data analytics. By generating value-added data, they provide deeper insight into processes related to the components. An intelligent common rail diesel fuel injection valve for large engine applications in combination with machine learning allows reliable prediction of key combustion parameters such as maximum cylinder pressure, combustion phasing and indicated mean effective pressure. However, fault-related changes to the injection valve also have to be considered. Based on experiments on a medium-speed four-stroke single-cylinder research engine with a displacement of approximately 15.7 liter, this study investigates the extent to which the intelligent injection valve can improve the reliability of combustion parameter predictions in the presence of injection valve faults.
Technical Paper

How Can a Sustainable Energy Infrastructure based on Renewable Fuels Contribute to Global Carbon Neutrality?

2024-07-02
2024-01-3023
Abstract. With the COP28 decisions the world is thriving for a future net-zero-CO2 society and the and current regulation acts, the energy infrastructure is changing in direction of renewables in energy production. All industry sectors will extend their share of direct or indirect electrification. The question might arise if the build-up of the renewables in energy production is fast enough. Demand and supply might not match in the short- and mid-term. The paper will discuss the roadmaps, directions and legislative boundary parameter in the regenerative energy landscape and their regional differences. National funding on renewables will gain an increasing importance to accelerate the energy transformation. The are often competing in attracting the same know-how on a global scale. In addition the paper includes details about energy conversion, efficiency as well as potential transport scenarios from production to the end consumer.
X