Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

HD Diesel Engines Development for Alternative Fuel Use

2015-01-14
2015-26-0056
This work is based on the development of heavy-duty diesel engines for alternative fuel use. Three diesel engines for commercial vehicle applications were studied: a 13L diesel engine was converted to a dedicated lean-burn NG engine and two diesel engines (14 and 4.25L) were converted to a dual-fuel operation with diesel-NG and diesel-LPG respectively. The dedicated NG engine conversion was achieved by means of some relevant modifications such as the reduction of the compression ratio, design of a gas injection system, design of a spark plug adapter, and implementation of a complete EMS. In relation to dual-fuel cases, some minor modifications were made to the diesel baseline engines such as the installation of the gas train components and the implementation of a gas ECU for the management of the diesel and gas injection using some CAN bus J1939 signals.
Technical Paper

DESIGN OF RELIABLE ACCELERATED FATIGUE TEST PROGRAMS BASED ON REAL MARKET USE

2010-10-06
2010-36-0029
Durability is one of the most important goals in the current state-of the-art design of new vehicles. Usually the durability performance is validated by the vehicle manufacturers driving directly the prototypes in field or through endurance schedules on proving ground fatigue surfaces. The validation procedure driving directly in field is very expensive and time-consuming. The reliability and accuracy of validations in proving ground surfaces are many times unknown, mainly because such endurance schedules are not fitted to the market (driving conditions and type of roads) and historically are based on empirical procedures. This paper discusses how IDIADA has developed a methodology to design accelerated durability schedules which obtain less expensive and fast durability validation procedures, as well as being reliable and fitted to the market and durability targets.
Technical Paper

Making the Best Out of Aerodynamics: Platoons

2013-04-08
2013-01-0767
In a near future, platooning could become one of the most accessible strategies to help reduce the consumption of fuel and the emissions of toxic gases in the atmosphere, while also adding safety to the users and generating a better traffic flow. Nowadays, the auto industry and the governments are facing enormous challenges to reduce the amount of pollution in the atmosphere, to decrease the dependency on fossil fuels to generate energy and to increase safety on the highways. Several approaches are made, such as bio-fuels, hybrid and electric vehicles, engine downsizing and new modes of transportation that are more versatile and environmentally friendly. The downside is that most of this efforts are costly and require time and expense to be put to work. Platooning is an alternative option to minimize the impact to the environment profiting from the aerodynamic effects that occur naturally around a moving vehicle.
Technical Paper

Legal and Consumer Requirements in ASEAN Countries

2014-03-24
2014-01-2027
South East Asia is one of the regions with highest traffic-related fatality rates worldwide −18.5 fatalities per 100.000 inhabitants-. In response to that, governments of ASEAN countries are currently introducing new regulations, which will help to improve the road safety standards in the region. This paper reviews new safety regulations in force of following ASEAN countries: Singapore, Thailand, Malaysia, Indonesia, Vietnam and the Philippines. General safety trends promote the approach to international standards as well as the adoption of UNECE regulations. In fact, the 1958 agreement was signed by Thailand and Malaysia in 2006. Besides, Malaysia has gradually adopted fifty-three UNECE regulations so far and is currently considering the inclusion of twenty-four more. After the success of other NCAP organizations, the ASEAN NCAP assessment program was established in 2011.
Technical Paper

Performance and Emissions of a HD Diesel Engine Converted for Alternative Fuel Use

2014-10-13
2014-01-2685
An experimental study was carried out in order to determine the effect on performance and pollutant emissions of converting an existing heavy-duty diesel engine for alternative fuel use. More specifically, a HD diesel engine used in commercial vehicle applications with Euro II baseline emission level was studied in two ways: on the one hand the diesel engine was converted to a dedicated lean-burn CNG engine and on the other hand the baseline diesel engine was converted to a dual-fuel engine (diesel + LPG) with multi-point LPG injection in the intake cylinder ports.
Technical Paper

Electric Vehicle Ride & Vibrations Analysis - Full electric vehicle MBD model development for NVH studies

2024-06-12
2024-01-2918
The NVH performance of electric vehicles is a key indicator of vehicle quality, being the structure-borne transmission predominating at low frequencies. Many issues are typically generated by high vibrations, transmitted through different paths, and then radiated acoustically into the cabin. A combined analysis, with both finite-element and multi-body models, enables to predict the interior vehicle noise and vibration earlier in the development phases, to reduce the development time and moreover to optimize components with an increased efficiency level. In the present work, a simulation of a Hyundai electric vehicle has been performed in IDIADA VPG with a full vehicle multibody (MBD) model, followed by vibration/acoustic simulations with a Finite elements model (FEM) in MSC. Nastran to analyze the comfort. Firstly, a full vehicle MBD model has been developed in MSC. ADAMS/Car including representative flexible bodies (generated from FEM part models).
X