Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Journal Article

Brake Particle Emission Measurements - Testing Method and Results

2017-03-28
2017-01-0996
Brake Particle Emission (BPE) is gaining considerable importance for the friction brake and automotive industry. So far no common approach or legislation for BPE characterization exists although many activities in this field have been started during the last years. Taking this into account, the authors carried out a joint measurement campaign to investigate a new approach regarding the sampling location using a brake dynamometer. During preliminary investigations the influence of the cooling air quality has been examined and a sampling point position validation has been carried out. At first the stabilization behavior for repeated test cycles and variations of volumetric air flow rates are analyzed. As a next step the role of volatile particle emissions is determined. Subsequently, the influence of load history and friction power is studied. Finally results in terms of the role of high temperature applications are presented.
Technical Paper

Investigations on Headlamp and Car Body Tolerances in Real Life

2020-04-14
2020-01-0635
Good lighting is crucial for safe driving at night. Unfortunately, many parameters are contributing to the final result of the individual tolerances of car body, dynamics and headlamp: the resulting aim. The paper will analyze individual tolerance contributors from car body parameters like load, tire pressure, suspension as well as temperature parameters of chassis and plastic parts. The investigation shows that the headlight aim can fluctuate in a worst case scenario more than ±0.3°.
Technical Paper

Predicting Overall Seating Discomfort Based on Body Area Ratings

2007-04-16
2007-01-0346
For car manufacturers, seating comfort is becoming more and more important in distinguishing themselves from their competitors. There is a simultaneous demand for shorter development times and more comfortable seats. Comfort in automobile seats is a multi-dimensional and complex problem. Many current sophisticated measuring tools were consulted, but it is unclear on which factors one should concentrate attention when measuring comfort. The goal of this paper is to find a model in order to predict the overall seating discomfort based on body area ratings. Besides micro climate, the pressure distribution appears to be the most objective measure comprising with the clearest association with the subjective ratings. Therefore an analysis with three different test series was designed, allowing the variation of pressure on the seat surface. In parallel the subjects were asked to judge the local and the overall sensation.
Technical Paper

Process Modeling in the Life Cycle Design - Environmental Modeling of Joining Technologies within the Automotive Industry -

1998-11-30
982190
For integrating Life Cycle Assessment into the design process it is more and more necessary to generate models of single life cycle steps respectively manufacturing processes. For that reason it is indispensable to develop parametric processes. With such disposed processes the aim could only be to provide a tool where parametric environmental process models are available for a designer. With such a tool and the included models a designer will have the possibility to make an estimation of the probable energy consumption and needed additive materials for the applied manufacturing technology. Likewise if he has from the technical point of view the opportunity, he can shift the applied joining technology in the design phase by changing for instance the design.
Technical Paper

Multicore vs Safety

2010-04-12
2010-01-0207
It is the beginning of a new age: multicore technology from the PC desktop market is now also hitting the automotive domain after several years of maturation. New microcontrollers with two or more main processing cores have been announced to provide the next step change in available computing power while keeping costs and power consumption at a reasonable level. These new multicore devices should not be confused with the specialized safety microcontrollers using two redundant cores to detect possible hardware failures which are already available. Nor should they be confused with the heterogeneous multicore solutions employing an additional support core to offload a single main processing core from real-time tasks (e.g. handling peripherals).
Technical Paper

Collaborative Product Creation Driving the MOST Cooperation

2002-10-21
2002-21-0003
The following document offers insight into the work of the MOST Cooperation. Now that MOST is on the road, a short overview of five years of successful collaborative work of the partners involved and the results achieved will be given. Emphasis is put on the importance of a shared vision in combination with shared values as a prerequisite for targeted collaborative work. It is also about additional key success factors that led to the success of the MOST Cooperation. Your attention will be directed to the way the MOST Cooperation sets and achieves its goals. And you will learn about how the organization was set-up to support a fast progression towards the common goal. The document concludes with examples of recent work as well as an outlook on future work.
Technical Paper

Implementation of a Complexity Optimized Product Design Methodology

2003-03-03
2003-01-1013
The paper describes the integration of Complexity Management into the design cycle of an Automobile Manufacturer. It explains the reasons why most Automobile Manufacturers lack effective processes of dealing with complexity issues and introduces a holistic methodology for systematic and successful avoidance and control of unnecessary complexity. The paper provides an overview on the methods and tools necessary for the successful application of the above principle and is based on the experiences made with the implementation of the concept into the Audi AG product development process.
Technical Paper

Aerodynamic Investigation of Vehicle Cooling-Drag

2012-04-16
2012-01-0170
The interaction between cooling-air and external aerodynamics is known as interference. In a conventional car this interference under the hood results in additional drag. It is estimated that about 10% of the overall aerodynamic drag originates from the cooling air [1] depending on the car shape and cooling configuration. Obviously, cooling drag should be minimized for vehicles with low-drag aerodynamics. In this study cooling-air interference-effects are investigated through experimental, numerical and analytical methods with a focus on the surface pressure of the vehicle. The surface pressure of vehicles with and without interference effects is compared. Observations show that when the cooling-air inlet is opened a pressure rise occurs around the inlet, while a pressure drop appears around the outlet. This phenomenon was investigated for several vehicle shapes including a simplified bluff-body (SAE-Body) and a close-to-real quarter-scale model (aeromodel).
Technical Paper

Software Architecture Methods and Mechanisms for Timing Error and Failure Detection According to ISO 26262: Deadline vs. Execution Time Monitoring

2013-04-08
2013-01-0174
More electronic vehicle functions lead to an exponentially growing degree of software integration in automotive ECUs. We are seeing an increasing number of ECUs with mixed criticality software. ISO26262 describes different safety requirements, including freedom from interference and absence from error propagation for the software. These requirements mandate particular attention for mixed-criticality ECUs. In this paper we investigate the ability to guarantee that these safety requirements will be fulfilled by using established (deadline monitoring) and new error detection mechanisms (execution time monitoring). We also show how these methods can be used to build up safe and efficient schedules for today's and future automotive embedded real time systems with mixed criticality software.
Technical Paper

Optimization of Trim Component and Reduction of the Road Noise Transmission Based on Finite Element Methods

2018-06-13
2018-01-1547
The acoustic trim components play an essential role in NVH behavior by reducing both the structure borne and airborne noise transmission while participating to the absorption inside the car. Over the past years, the interest for numerical solutions to predict the noise transmission through trim packages has grown, leading to the development of dedicated CAE tools. The incrementally restrictive weight and space constraints force today CAE engineers to seek for optimized trim package solution. This paper presents a two-steps process which aims to reduce the structure borne road noise due to floor panel using a coupled simulation with MSC NASTRAN and Actran. The embossment of the supporting steel structure, the material properties of porous layers and the thickness of visco-elastic patches are the design variables of the optimization process.
Technical Paper

On Timing Requirements and a Critical Gap between Function Development and ECU Integration

2015-04-14
2015-01-0180
With the increasing complexity of electronic vehicle systems, one particular “gap” between function development and ECU integration becomes more and more apparent, and critical; albeit not new. The core of the problem is: as more functions are integrated and share the same E/E resources, they increasingly mutually influence and disturb each other in terms of memory, peripherals, and also timing and performance. This has two consequences: The amount of timing-related errors increases (because of the disturbance) and it becomes more difficult to find root causes of timing errors (because of the mutual influences). This calls for more systematic methods to deal with timing requirements in general and their transformation from function timing requirements to software architecture timing requirements in particular.
Technical Paper

Time-Triggered Architecture Based on FlexRay: Roadmap from High-Speed Data Networking to Safety-Relevant Automotive Applications

2006-10-16
2006-21-0042
Future applications in the automotive domain such as distributed control functions need a highly dependable communication system. The current FlexRay standard already provides high transmission speeds and addresses deterministic data communication. This paper shows how to enhance the safety properties for handling a new set of applications and speeding up the communication even more. The concept of Layered FlexRay is based on the FlexRay protocol and addresses the requirements of safety-relevant applications in a distributed communication network. An implementation of this approach is depicted with a Safety Core hardware chip. It is designed to handle the communication between the FlexRay system beneath and the application on the host CPU above, providing highly efficient data management and execution of safety functions which otherwise would have to be executed in software on the host CPU.
Technical Paper

Software Development Process and Software-Components for X-by-Wire Systems

2003-03-03
2003-01-1288
The term X-by-Wire is commonly used in the automotive industry to describe the notion of replacing current mechanical or hydraulic chassis and powertrain systems with pure electro-mechanical systems. The paper describes the current trends and the architecture of future chassis electronics systems. The first part of the paper covers the systems architecture of x-by-wire electronics systems. We describe the network and the software architecture in more detail. The paper also explains some of the software components, in particular the operating system and the communication layer. The second part of the paper gives a description of the current state of the development process for software intended for safety-relevant systems. A possible tool chain for this development process, current possibilities as well as limitations and challenges are described.
Journal Article

Practical Use of AUTOSAR in Safety Critical Automotive Systems

2009-04-20
2009-01-0748
With the increased adoption of AUTOSAR operating systems across the different automotive system domains a notable exception has been that of the safety critical systems. This domain has strict requirements on precise requirements capturing, proven design flow, robust implementation, exhaustive testing, detailed documentation and traceability, and project management processes. These requirements are normally prohibitive to adopt for commercial ‘one size fits all’ solutions due to the huge expense and resources required to meet such a strict regime. So under these constraints AUTOSAR is far from a perfect fit for safety systems. Nonetheless, the attractive features of reuse and portability still make AUTOSAR based systems highly desirable.
Book

Modern Engine Technology from A to Z

2007-09-28
Part dictionary, part encyclopedia, Modern Engine Technology from A to Z will serve as your comprehensive reference guide for many years to come. Keywords throughout the text are in alphabetical order and highlighted in blue to make them easier to find, followed, where relevant, by subentries extending to as many as four sublevels. Full-color illustrations provide additional visual explanation to the reader. This book features: approximately 4,500 keywords, with detailed cross-references more than 1,700 illustrations, some in full color in-depth contributions from nearly 100 experts from industry and science engine development, both theory and practice
Book

Aerodynamics of Road Vehicles, Fifth Edition

2015-12-30
The detailed presentation of fundamental aerodynamics principles that influence and improve vehicle design have made Aerodynamics of Road Vehicles the engineer’s “source” for information. This fifth edition features updated and expanded information beyond that which was presented in previous releases. Completely new content covers lateral stability, safety and comfort, wind noise, high performance vehicles, helmets, engine cooling, and computational fluid dynamics.
Technical Paper

Ideas for Next Lighting Generations in Digitalization and Autonomous Driving

2018-04-03
2018-01-1038
Digitalization in Industry and Society is progressing quickly. Up to now, just 5 static and standard lighting applications have been dominating in the U.S. (Low/High Beam, Daytime Running Lamp Turn Indicator & Position Lamp). The global interest in standardization of light driven messages from autonomous vehicles to other traffic participants has opened new research needs and research findings. In Europe, GTB has established a working group dedicated to this topic. The article will discuss the possible contribution of signalling and lighting functions to Digitalization and Autonomous driving by explaining the first elements of functional definition and research results.
Technical Paper

Transmission of sound under the influence of various environmental conditions

2024-06-12
2024-01-2933
Electrified vehicles are particularly quiet, especially at low speeds due to the absence of combustion noises. This is why there are laws worldwide for artificial driving sounds to warn pedestrians. These sounds are generated using a so-called Acoustic Vehicle Alerting System (AVAS) which must maintain certain minimum sound pressure levels in specific frequency ranges at low speeds. The creation of the sound currently involves an iterative and sometimes time-consuming process that combines composing the sound on a computer with measuring the levels with a car on an outside noise test track. This continues until both the legal requirements and the subjective demands of vehicle manufacturers are met. To optimize this process and reduce the measurement effort on the outside noise test track, the goal is to replace the measurement with a simulation for a significant portion of the development.
X