Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Simulation of Underbody Contribution of Wind Noise in a Passenger Automobile

2013-05-13
2013-01-1932
Wind noise is a significant source of interior noise in automobiles at cruising conditions, potentially creating dissatisfaction with vehicle quality. While wind noise contributions at higher frequencies usually originate with transmission through greenhouse panels and sealing, the contribution coming from the underbody area often dominates the interior noise spectrum at lower frequencies. Continued pressure to reduce fuel consumption in new designs is causing more emphasis on aerodynamic performance, to reduce drag by careful management of underbody airflow at cruise. Simulation of this airflow by Computational Fluid Dynamics (CFD) tools allows early optimization of underbody shapes before expensive hardware prototypes are feasible. By combining unsteady CFD-predicted loads on the underbody panels with a structural acoustic model of the vehicle, underbody wind noise transmission could be considered in the early design phases.
Journal Article

Brake Particle Emission Measurements - Testing Method and Results

2017-03-28
2017-01-0996
Brake Particle Emission (BPE) is gaining considerable importance for the friction brake and automotive industry. So far no common approach or legislation for BPE characterization exists although many activities in this field have been started during the last years. Taking this into account, the authors carried out a joint measurement campaign to investigate a new approach regarding the sampling location using a brake dynamometer. During preliminary investigations the influence of the cooling air quality has been examined and a sampling point position validation has been carried out. At first the stabilization behavior for repeated test cycles and variations of volumetric air flow rates are analyzed. As a next step the role of volatile particle emissions is determined. Subsequently, the influence of load history and friction power is studied. Finally results in terms of the role of high temperature applications are presented.
Journal Article

Particulate Filter Design for High Performance Diesel Engine Application

2008-06-23
2008-01-1747
A catalyzed ceramic filter has been used on diesel engines for diesel particulate matter emission control. A key design criteria for a diesel particulate filter is to maximize DPF performance, i.e. low back pressure and compact size as well as near continuous regeneration operation. Based upon the modeling and deep understanding of material properties, a DPF system design has been successfully applied on a high performance diesel engine exhaust system, such as the Audi R10 TDI, the first diesel racing car that won the most prestigious endurance race in the world: the 24 hours of Le Mans in both 2006 and 2007. The design concept can be used for other materials and applications
Technical Paper

Potentials and Challenges of a Brake Particle Emission Collecting System

2020-10-05
2020-01-1635
Brake particle emissions as a part of non-exhaust emissions are becoming more and more relevant, various international research activities can be stated. Also from the legislation side, first hints are given in regards of possible regulations. One possible approach for the reduction of brake particle emissions deals with the collection of those particles close to the foundation brake. The presented paper will follow such an approach and give some insights. In a first step, the technical layout is described for bench and vehicle testing. While for bench testing a PMP-like style of the setup could be chosen, the vehicle test setup is oriented on conventional wheel dust measurements. Hence, presented results of laboratory testing are dealing with PN and PM measurements. Also the impact on particle size distribution is discussed. It can be stated, that the particle collecting system is able to improve PN and PM emissions. Additionally, ultra-fine particles are almost eliminated.
Technical Paper

Reinforced Light Metals for Automotive Applications

2007-04-16
2007-01-1228
Efficiency and dynamic behavior of a vehicle are strongly affected by its weight. Taking into consideration comfort, safety and emissions in modern automobiles, lightweight design is more of a challenge than ever in automotive engineering. Materials development plays an important role against this background, since significant weight decrease is made possible through the substitution of high density materials and more precise adjustment of material parameters to the functional requirements of components. Reinforced light metals, therefore, offer a promising approach due to their high strength to weight ratio. The paper gives an overview on matrix and reinforcement structures suited for the high volume output of the automotive industry. Further analytical and numerical approaches to describe the strengthening effects and the good mechanical characteristics of these composite materials are presented.
Technical Paper

BMW High Precision Fuel Injectionin Conjunction with Twin-Turbo Technology: a Combination for Maximum Dynamic and High Fuel Efficiency

2007-04-16
2007-01-1560
The new inline six cylinder Twin-Turbo gasoline engine forms the pinnacle of BMW's wide range of straight-six power units, developing maximum output of 300hp and a peak torque of 300 lb-ft with a displacement of 3.0 litre. Using two turbochargers in combination with the new BMW High Precision Fuel Injection leads to a responsive build-up of torque and to an impressive development of power over a wide engine speed range. This paper gives a detailed overview of the turbocharger-and the injection system and describes the effect of both systems on power and torque, as well as on fuel consumption and emission. The big advantage of using two small turbochargers is their low moment of inertia, even the slightest movement of the accelerator pedal by the driver's foot serving to immediately build up superior pressure and power. This puts an end to the turbo “gap” previously typical of a turbocharged power unit.
Technical Paper

Process Modeling in the Life Cycle Design - Environmental Modeling of Joining Technologies within the Automotive Industry -

1998-11-30
982190
For integrating Life Cycle Assessment into the design process it is more and more necessary to generate models of single life cycle steps respectively manufacturing processes. For that reason it is indispensable to develop parametric processes. With such disposed processes the aim could only be to provide a tool where parametric environmental process models are available for a designer. With such a tool and the included models a designer will have the possibility to make an estimation of the probable energy consumption and needed additive materials for the applied manufacturing technology. Likewise if he has from the technical point of view the opportunity, he can shift the applied joining technology in the design phase by changing for instance the design.
Technical Paper

Dual Line Exhaust Design Optimisation to Maximize SCR Catalyst Efficiency thru Improved Ammonia Distribution

2009-04-20
2009-01-0914
The SCR after treatment system is already in production for passenger car engines with a single exhaust system. In this case, the exhaust system has to be designed very carefully to optimize the Ammonia distribution on the catalyst and therefore the DeNOx potential. The application to V8 engines with two turbochargers delivering the gas into two separated DOC & DPF units is an additional challenge. This paper describes the different optimization steps of such an exhaust system and the tools used during this work. After a design phase to integrate the SCR system in the exhaust geometry, a first CFD study was conducted to evaluate the performance of the basic system using one or two urea injectors. An optimization of the connection of the two tubes, directly in front of the SCR catalyst, has been designed using further CFD calculations as well as a marker gas SF6 on a cold flow bench.
Technical Paper

Measuring Near Zero Automotive Exhaust Emissions - Zero Is a Very Small Precise Number

2010-04-12
2010-01-1301
In the environmentally conscious world we live in, auto manufacturers are under extreme pressure to reduce tailpipe emissions from cars and trucks. The manufacturers have responded by creating clean-burning engines and exhaust treatments that mainly produce CO2 and water vapor along with trace emissions of pollutants such as CO, THC, NOx, and CH4. The trace emissions are regulated by law, and testing must be performed to show that they are below a certain level for the vehicle to be classified as road legal. Modern engine and pollution control technology has moved so quickly toward zero pollutant emissions that the testing technology is no longer able to accurately measure the trace levels of pollutants. Negative emission values are often measured for some pollutants, as shown by results from eight laboratories independently testing the same SULEV automobile.
Technical Paper

Influence of Injection Nozzle Hole Diameter on Highly Premixed and Low Temperature Diesel Combustion and Full Load Behavior

2010-10-25
2010-01-2109
Diesel engines face difficult challenges with respect to engine-out emissions, efficiency and power density as the legal requirements concerning emissions and fuel consumption are constantly increasing. In general, for a diesel engine to achieve low raw emissions a well-mixed fuel-air mixture, burning at low combustion temperatures, is necessary. Highly premixed diesel combustion is a feasible way to reduce the smoke emissions to very low levels compared to conventional diesel combustion. In order to reach both, very low NOX and soot emissions, high rates of cooled EGR are necessary. With high rates of cooled EGR the NOX formation can be suppressed almost completely. This paper investigates to what extent the trade-off between emissions, fuel consumption and power of a diesel engine can be resolved by highly premixed and low temperature diesel combustion using injection nozzles with reduced injection hole diameters and high pressure fuel injection.
Technical Paper

Multicore vs Safety

2010-04-12
2010-01-0207
It is the beginning of a new age: multicore technology from the PC desktop market is now also hitting the automotive domain after several years of maturation. New microcontrollers with two or more main processing cores have been announced to provide the next step change in available computing power while keeping costs and power consumption at a reasonable level. These new multicore devices should not be confused with the specialized safety microcontrollers using two redundant cores to detect possible hardware failures which are already available. Nor should they be confused with the heterogeneous multicore solutions employing an additional support core to offload a single main processing core from real-time tasks (e.g. handling peripherals).
Technical Paper

Developing Planar Laser-Induced Fluorescence for the Investigation of the Mixture Formation Process in Hydrogen Engines

2004-03-08
2004-01-1408
Planar laser-induced fluorescence (PLIF) has been successfully used for the investigation of the mixture formation process in hydrogen engines. Detailed information has been obtained about the process development (qualitative measurements) and on the fuel/air-ratio (quantitative measurements) in the combustion chamber. These results can be used for further optimization of the mixture formation and the combustion process concerning emissions and fuel consumption. The measurement technique used here is not limited to hydrogen and can also be applied to other fuel gases like natural gas. The main topic of this paper is the experimental verification of the PLIF data by simultaneous Raman scattering measurements. By Raman scattering the fuel/air-ratio can directly be determined from the direct concentration measurements of the different gas species.
Technical Paper

First ULEV Turbo Gasoline Engine - The Audi 1.8 l 125 kW 5-Valve Turbo

2001-03-05
2001-01-1350
In an age when there is growing tension between customer expectations of high engine performance, low fuel consumption and compliance with the legal requirements on the emission of airborne pollution, the ability of a vehicle to meet the most stringent emission standards is becoming an increasingly important aspect of its market appeal. The 1.8 l, 5-valve turbo engine which Audi launched in 1994 represented an emissions concept which, thanks to its innovative close-coupled catalytic converter, provided an ideal basis for further development to an engine meeting the US ULEV emission standard, as the current engine does [1]. Its configuration as a ULEV concept necessitated the blanket optimisation of all components which influence the exhaust emissions. The pistons and injectors were improved in order to reduce untreated emissions.
Technical Paper

Next Generation Catalysts are Turbulent:Development of Support and Coating

2004-03-08
2004-01-1488
Future catalyst systems need to be highly efficient in a limited packaging space. This normally leads to a design where the flow distribution, in front of the catalyst, is not perfectly uniform. Measurements on the flow test bench show that the implementation of perforated foils for the corrugated and flat foils has the capability to distribute the flow within the channels in the radial direction so that the maximum of the given catalyst surface is of use, even under very poor uniformity indices. Therefore a remarkable reduction in back pressure is measured. Emission results demonstrate cold start improvement due to reduced heat capacity. The use of LS - structured ( Longitudinal structured ) corrugated foils creates a high turbulence level within the single channels. The substrate lights-up earlier and the maximum conversion efficiency is reached more quickly.
Technical Paper

New Physical and Chemical Models for the CFD Simulation of Exhaust Gas Lines: A Generic Approach

2002-03-04
2002-01-0066
In the near future the effort on the development of exhaust gas treatment systems must be increased to meet the stringent emission requirements. If the relevant physical and chemical models are available, the numerical simulation is an important tool for the design of these systems. This work presents a CFD model that allows to cover the full range of applications in this area. After a detailed presentation of the theoretical background and the modeling strategies results for the simulation of a close-coupled catalyst are shown. The presented model is also applied to the oxidation of nitrogen oxides, to a diesel particle filter and a fuel-cell reformer catalyst.
Technical Paper

New Design of Ultra High Cell Density Metal Substrates

2002-03-04
2002-01-0353
To meet the most stringent emissions standards such as Super Ultra Low Emission Vehicle (SULEV) in California, substrates with high cell densities and ultra thin foils are needed, mounted in a close-coupled position. A new substrate design has been developed incorporating increased thermal and mechanical load in association with reduced thermal mass and improved heat transfer due to higher cell density. This paper describes the development of the new design using finite element calculation and practical test results from component and engine test benches.
Technical Paper

Development and Application of a New Mass Spectrometer Based Measurement System for Fast Online Monitoring of Oil Emission in the Raw Exhaust Gas of Combustion Engines

2002-10-21
2002-01-2713
An increasing environmental consciousness as well as the awareness for sustained preservation of natural resources causes new regulations for emissions and great efforts for fuel economy and increasing oil service intervals. For a better understanding of the process generating pollutants, the emissions of every phase of the combustion cycle have to be monitored online. Moreover, it is important to measure the raw exhaust gas during different driving cycles and investigate the influence of different parameters as for example changing engine operating conditions. The new mass spectrometer (MS) based measurement system allows the direct detection of unburned gaseous oil HC without tracers. The gas inlet system enables crank angle resolved monitoring of different raw exhaust gas compounds in the exhaust manifold or directly in the cylinder.
Technical Paper

Aerodynamic Performance Assessment of BMW Validation Models using Computational Fluid Dynamics

2012-04-16
2012-01-0297
Aerodynamic performance assessment of automotive shapes is typically performed in wind tunnels. However, with the rapid progress in computer hardware technology and the maturity and accuracy of Computational Fluid Dynamics (CFD) software packages, evaluation of the production-level automotive shapes using a digital process has become a reality. As the time to market shrinks, automakers are adopting a digital design process for vehicle development. This has elevated the accuracy requirements on the flow simulation software, so that it can be used effectively in the production environment. Evaluation of aerodynamic performance covers prediction of the aerodynamic coefficients such as drag, lift, side force and also lift balance between the front and rear axle. Drag prediction accuracy is important for meeting fuel efficiency targets, prediction of front and rear lifts as well as side force and yawing moment are crucial for high speed handling.
Technical Paper

Potentials of Phlegmatization in Diesel Hybrid Electric Vehicles

2011-06-09
2011-37-0018
An approach for model-based control strategy design for diesel hybrid drive-trains has been developed, permitting the reduction of fuel consumption as well as of exhaust gas emissions. The control strategy consists of four core-functions: the SOC-management, the operation mode determination, the gear selection, and the thermal monitoring. Based on those different interpretations, a control strategy can be designed that leads to great reductions in fuel consumption or alternatively to a mentionable decline of nitrous oxides. In this trade-off, both aims can not be optimized at a time. Though, the strategy to be used is a compromise, designs for control strategies are possible that reduce both for a significant amount. Extending this control strategy by adding functions for transient behavior at start-up and load changes; phlegmatization enables additional potentials for emission reduction.
Technical Paper

Experimental Heat Flux Analysis of an Automotive Diesel Engine in Steady-State Operation and During Warm-Up

2011-09-11
2011-24-0067
Advanced thermal management systems in passenger cars present a possibility to increase efficiency of current and future vehicles. However, a vehicle integrated thermal management of the combustion engine is essential to optimize the overall thermal system. This paper shows results of an experimental heat flux analysis of a state-of-the-art automotive diesel engine with common rail injection, map-controlled thermostat and split cooling system. Measurements on a climatic chamber engine test bench were performed to investigate heat fluxes and energy balance in steady-state operation and during engine warm-up from different engine start temperatures. The analysis includes the influence of the operating point and operating parameters like EGR rate, injection strategy and coolant temperature on the engine energy balance.
X