Refine Your Search

Topic

Author

Search Results

Technical Paper

Thermal Characterization of Li-Ion Phosphate (LiFePO4) HEV Battery Using HPPC Test

2021-09-15
2021-28-0121
Recently, Hybrid electric vehicles have become significant. Electric vehicle is still in its infancy while grappling with multiple solutions to its problem of range anxiety and heavy weight. It makes HEV the viable and intermediate solution which can facilitate the transition. The battery behaviour is grossly defined by its dependence on variation due to temperature change. Hence, this present work focuses on understanding thermal characterization & pure behaviour of the Li-Ion Phosphate (LiFePO4) P1-HEV battery using the HPPC test. This becomes imperative because of the varying driver demands and ambient temperatures over the use during the day. Thus, the current drawn from battery varies (different C rate) leading to heat generation (I2R heating) within the pack/individual cell. Cyclically, impacting the cell performance and battery cycle life.
Technical Paper

Prediction of Tyre Dynamic Behaviour for NVH and its Experimental Validation in Anechoic Chamber

2021-09-22
2021-26-0303
In present scenario, tyre industry is more focused on providing maximum extent of NVH comfort to passengers by improvising the tyre design. Noise contribution from the tyres is classified in to three regions, viz., structure-borne (tyre vibrations), air-borne (tread pattern) and cavity noise (air cavity). In general, a Finite Element (FE) model of tyre provides an inherent advantage of analyzing tyre dynamic behavior. In this paper, an attempt was made to develop a three-dimensional FE tyre model and validate the same through experimental approach. The CAD Model of the tyre was generated through 3D image scanning process. Material property extraction of tyre was carried out by Universal Testing Machine (UTM) to generate Finite Element (FE) model. For validation of tyre FE model, Experimental Modal Analysis (EMA) and Noise Transfer Function (NTF) were conducted.
Technical Paper

Failure of Li-Ion 18650 Cylindrical Cells Subjected to Mechanical Loading and Computational Model Development

2021-09-22
2021-26-0318
To enhance the crashworthiness of electric vehicles, designing the optimized and safer battery pack is very essential. The deformed battery cell can result in catastrophic events like thermal runaway and thus it becomes crucial to study the mechanical response of battery cell. The goal of the research is to experimentally investigate the effect of mechanical deformation on Lithium-ion battery cell. The paper thoroughly studies the phenomenon of short circuiting at the time of failure. Various experiments are carried on 18650 cylindrical cells (NCA chemistry) under custom designed fume hood. The setup captures the failure modes of battery cell. The loading conditions have been designed considering the very possible physical conditions during crash event. The study has been done for radial compression, semicircular indentation, hemispherical indentation, flat circular indentation and case of three-point bending.
Technical Paper

Evaluation of Cable Harness of an Electric Vehicle Powertrain through Simulation

2021-09-22
2021-26-0350
The Electric Vehicles (EV) or Hybrid Electric Vehicle (HEV) has a bunch of electrical/electronic components and its operation give rise to complicated EMI/EMC issues. The Power Electronics Module (PEM), comprising of DC-DC convertor/invertor and Battery Management Unit (BMU), is driving the motor to propel the vehicle. “Battery Pack Module” powers these units through cables. The fast switching of these circuit elements present in the system leads to noise propagation through the cables. These noise signals give rise to various Electromagnetic (EM) related issues in the cable harness of vehicle. It is essential that these cables should not interfere with other electronic components and also does not get effected by external EM disturbances.
Technical Paper

Model Order Reduction Technique to Aid Control System Design

2021-09-22
2021-26-0347
Design of real time active controls for structural dynamics problems requires a very precise mathematical model, to closely determine the system dynamic behavior, under virtual simulation. The finite element models can somehow be used as a mathematical model but due to complex shape/structure of the component, the size of discrete models resulting from finite element analysis is usually very large, causing the virtual simulation to be extremely computationally intensive and time consuming, also the boundary conditions applied are not very scalable, making the system deviate from its real dynamic behavior. Thus, this paper deals with the design of a Model Order Reduction technique, using orthogonal decomposition of system matrices, which can be used for creating accurate low-order dynamic model with scalable boundary conditions.
Technical Paper

Smart and Compact Simulation Tool for Electric Vehicle Component Sizing

2021-09-22
2021-26-0419
Electric Vehicles (EVs), with its inherent advantage of zero tailpipe emissions, are gaining importance because of aggressive push from government not only to reduce air pollution but also to reduce dependency of fossil fuel. EVs and necessary charging infrastructure along with ‘connected’ technology is redefining mobility. Considering the fast growing EV market, it becomes important for an EV Powertrain Architect to design and develop a powertrain solution having low engineering efforts and satisfying business, market and regulatory requirements at a competitive price. This paper presents a compact, flexible, convenient and smart featured simulation tool for an EV Powertrain Architect for estimating the specifications of key powertrain components such as traction battery and electric motor. The proposed tool takes into consideration the end-user as well as the regulatory requirements of range, maximum speed, acceleration and gradeability.
Technical Paper

Aluminium for Curbing GHG Emissions in Indian Public Transport Buses

2020-04-14
2020-01-1050
Major cause of air pollution in the world is due to burning of fossil fuels for transport application; around 23% GHG emissions are produced due to transport sector. Likewise, the major cause of air pollution in Indian cities is also due to transport sector. Marginal improvement in the fuel economy provide profound impact on surrounding air quality and lightweighting of vehicle mass is the key factor in improving fuel economy. The paper describes robust and integrated approach used for design and development of lightweight bus structures for Indian city bus applications. An attempt is made to demonstrate the use of environment friendly material like aluminium in development of lightweight superstrutured city buses for India. Exercise involved design, development and prototype manufacturing of 12m Low Entry and 12m Semi Low Floor (SLF) bus models.
Technical Paper

Modal Analysis of Chladni Plate Using Cymatics

2020-09-25
2020-28-0320
This work aims at demonstrating nodes and antinodes at various frequencies of vibrations. Chladni plate is used for this purpose. When the plate is excited because of vibrations from a vibrator source, the sand of the plate creates specific patterns. These patterns are related to the excitation frequency. The sand on the plate moves away from antinodes where the amplitude of the standing wave is maximum and towards nodal lines where the amplitude is minimum or zero, forming patterns known as Chladni figures. The formation of patterns depends on material properties, geometry of plate, and thickness of plate and frequency/vibration pattern of the vibrator. The experimental setup consisted of a aluminum rectangular plate of 16 cm × 16 cm and aluminum circular plate of diameter 16 cm are having thickness of 0.61 mm placed over a mechanical vibrator (GelsonLab HSPW-003), which was driven by a sine wave signal generator (Ningbo Hema scientific).
Technical Paper

Process Modelling of Aluminium Propeller Shaft by Integrated Computational Materials Engineering Approach

2021-09-22
2021-26-0374
An excellent physical and mechanical property makes Aluminium (Al) alloy suitable alternative lightweight materials against steel and cast iron in automotive components. ICME is a computational tool, which integrates the materials information to engineering product performance analysis. MatCalc is ICME tool, which follows the chain rule of process, microstructure, property and performance relationship in materials development. This paper reports the development of Al 6061-T6 propeller shaft through forging process and the materials and process model of the Al yoke is simulated using MatCalc simulation software. Finite element analysis method is used for designing of Al 6061-T6 propeller shaft. The forged Al yoke is solutionized at temperature 550°C for 1 hr followed by artificial ageing at temperature 180°C for 16 hrs to improve the hardness and strength of the yoke.
Technical Paper

Sound Quality Evaluation of a Brake and Clutch Pedal Assembly used for Automotive Applications

2017-01-10
2017-26-0194
Sound Quality (SQ) of brake and clutch pedal assembly plays an important role in contributing to vehicle interior noise and perception of sound. Quiet operation of brake and clutch units also reflects the vehicle built and material quality. Noise emitted from these sub-assemblies has to meet certain acceptance criteria as per different OEM requirements. Not much work has been carried on this over the years to characterize and quantify the same. An attempt has been made in this paper to study the sound quality of brake and clutch pedal assemblies at component level and validate the same by identifying the parameters affecting SQ. Effect on noise at different environmental conditions was studied with typical operating cycles in a hemi-anechoic chamber. The effect of sensor switches integrated within the clutch and brake pedal on sound quality is analyzed. It is found that the operating characteristics of switches drives the noise and SQ.
Technical Paper

The Application of the Simulation Techniques to Predict and Reduce the Interior Noise in Bus Development

2012-04-16
2012-01-0219
In order to reduce development time and costs, application of numerical prediction techniques has become common practice in the automotive industry. Among the wide range of simulation applications, prediction of the vehicle interior noise is still one of the most challenging ones. The Finite Element Method (FEM) is well known for acoustic predictions in the low-frequency range. As part of the development of a full sized bus model, noise levels at Driver Ear Levels (DEL) and Passenger Ear Levels (PEL) were targeted. The structural and acoustic analysis were performed for a bus to reduce interior noise in the low-frequency range. Various counter measures were identified and structural optimization/modifications were performed from virtual simulation to reduce the DEL and PEL. Structure-borne noise due to both road-induced vibration and engine vibration were considered by using FEM techniques.
Technical Paper

Development of Battery Management System for Hybrid Electric Two Wheeler

2018-04-03
2018-01-0430
The use of Hybrid Electric Vehicles (HEV) will become imperative to meet the emission challenges. HEV have two power sources-fossil fuels driven I.C. Engine and the battery based drive. Battery technologies have seen a tremendous development, and therefore HEV’s have been benefited. Even as the battery capacities have improved, maintaining and monitoring their health has been a challenge. This research paper uses open-source platform to build a BMS. The flexibility in the implementation of the system has helped in the rapid prototyping of the system. The BMS system was evaluated on a scaled-down electric toy car for its performance and sustainability. The BMS was evaluated for reverse polarity, protection against overcharge, short-circuit, deep discharge and overload on lead acid battery. It also includes temperature monitoring of the batteries. This proposed system is evaluated on the in-house HEV two-wheeler. The initial results are promising.
Technical Paper

Computational Material Modelling for Damage Prediction of Advanced High Strength Steel

2023-05-25
2023-28-1309
FEA based simulations are extensively used in automotive industry for improving the product design and reducing the time taken for design and prototyping. FEA based simulations require material data as an input in form of material models. Most commonly used material models for simulation of metallic materials are elastic models and elasto-plastic models, which provide very good correlation till ultimate tensile strength (UTS). For simulation beyond UTS value, elasto-plastic material model has to be used along with material model considering the damage accumulation post UTS. For crash like event in automotive crash, required material models should consider the effect of various stress state conditions (Triaxiality) and strain rate sensitivity of materials along with damage accumulation. In LS Dyna solver, MAT_ADD_EROSION material model (GISSMO) along with MAT_024 is widely used for these applications.
Technical Paper

An Upper Bound Elemental Technique for Load Prediction of Axisymmetric Hot Forged Specimens

2017-01-10
2017-26-0168
Forging is a metal forming process involving shaping of metal by the application of compressive forces using hammer or press. Forging load of equipment is an important function of forging process and the prediction of the same is essential for selection of appropriate equipment. In this study a hot forging material i.e. 42CrMo4 steel is selected which is used in automotive components like axle, crank shaft. Hot forging experiments at 750°C are carried out on cylindrical specimens of aspect ratio 0.75 and 1.5 with true height strain (ln (ho/hf)) of 0.6. Forging load for the experiments is calculated using slab and upper bound deformation models as well as Metal forming simulation using commercially available FEA software. The upper bound models with 30% deviation from the simulation results are found to be more accurate compared to the slab models.
Technical Paper

Simulation Based Design and Development of Test Track for ADAS Functions Validation and Verification with Respect to Indian Scenario

2019-01-09
2019-26-0100
Autonomous vehicles perform various functions with their own control strategies. Functions like Lane Departure Warning (LDW), Lane Keeping system (LKS) and Forward Collision Warning System (FCWS) requires special test tracks for their verification and validation. These test track requirements change with region to region according to available infrastructure. This paper deals with the design and development of test tracks for different ADAS functions verification and validation of Indian specific scenarios and its simulation in IPG CarMaker. The test track conceptualization has been done through the understanding and study of different international standards and geometry of test tracks for Indian conditions have been developed. IPG CarMaker software tool is used for creation of test track, and same track is used for simulation of above ADAS functions in IPG CarMaker.
Technical Paper

A Study to Address the Failure Mechanism of the Conventional 3-Point Restraint in Protecting the Far Side Occupant in a Rollover Accident

2015-01-14
2015-26-0161
Occupant motion in a vehicle rollover accident is a function of many factors. Some important ones are vehicle kinematics, position of the occupant in the vehicle, occupant size, ground topology and restraint usage. The far side belted occupants are more vulnerable than the near side occupants in a rollover accident as they have more energy as a result of their trailing and higher side of the vehicle. This outcome is attributable to the inadequate safety performance of the conventional single loop; B-pillar mounted D-ring restraints. Roof crush tends to displace the vehicle's B-pillar, resulting in D-Ring displacement which causes slack in the lap portion of the restraint. This slack enables centrifugal loads to move the far side occupant further away from the vehicle's instantaneous point of rotation. In this scenario, the presence of any ejection portal can result in an occupant becoming partially or fully ejected.
Technical Paper

Synthesis and Characterization of Nickel and Ni-TiO2 Nanocomposite Coatings Processed by Pulse Electro-deposition Technique

2015-01-14
2015-26-0060
Nickel electroplating is commonly used with substrates including steel, aluminum, plastic and zinc die-cast parts because of its high resistance to temperature, corrosion and wear in harsh conditions. To further enhance its tribological and mechanical properties, research works are going on to produce nano-reinforced composites of Ni with various ceramic and rare earth oxides like CeO2, ZrSiO4, SiC, TiO2, etc. The aim of present work is synthesis and characterization of Ni films and Ni based TiO2 nano-composite coating processed by pulse co-electrodeposition technique. Also, to investigate the various properties such as mechanical, wear and corrosion resistance, conductivity & thermal stability of Ni-TiO2 nanocomposites electrodeposited on steel substrate, especially the effects of the amount of nanosized TiO2 particles in Ni-TiO2 nanocomposites.
Technical Paper

Derivation of Non-linear Stiffness Characteristics for Lumped Uniaxial Springs from Hyperelastic Material Constitutive Models

2014-04-28
2014-28-0038
Hyperelastic material simulations are commonly performed in commercial FE codes due to availability of sophisticated algorithms facilitating virtual characterization of such materials in FEA easily. However, the solution time required is longer in FEA. Especially when excitation frequencies do not interfere with structural modes, flexible multibody simulation offers a lucrative and computationally inexpensive alternative. However, it is difficult to directly characterize hyperelastic materials in commercial MBS simulation codes, so the reduced solution time comes at the cost of decreased simulation accuracy, especially if the designer is provided with crude stress - strain test data. Hence, the need is to overcome the drawbacks in FEA and multibody codes, as well as to leverage best of both these codes simultaneously.
Technical Paper

Performance Evaluation of Chassis System for Converted Hybrid Electric Vehicle

2019-01-09
2019-26-0260
The technology development in automobiles is progressing towards providing smarter vehicles with increased efficiency and reduced emission. To cater this need, Electric Vehicles (EV) and Hybrid Electric Vehicles (HEV) are slowly thriving in Indian roads. Conversion of existing IC engine powered vehicle to HEV reduces complication in new vehicle development and also results in vehicles with increased efficiency and reduced emission. In order to convert the Conventional Vehicle to Hybrid Electric Vehicle, drive from electric motor was coupled with existing driveline by modifying mechanical systems suitably. Hybrid vehicle includes systems such as electric motors, inverters, high-voltage batteries and electronic control units, which are mounted in chassis members. Being a major load carrying member, any modifications in chassis system may affect the performance of vehicle, therefore it is necessary to evaluate the modified design of chassis members.
Technical Paper

Effect of Ambient Temperature and Inflation Pressure on Tire Temperature

2019-01-09
2019-26-0360
Tire failure is identified as a major cause of accidents on highways around the world in the recent past. A tire burst leads to loss of control of the vehicle which ends up in a catastrophe. There are various factors which are accounted for a tire burst. Heat buildup, aging of tire and cracks on tires are the major ones which are identified. A superior ability of the tire to dissipate the heat generated during operation is a major factor which prevents a tire failure. Other factors such as ambient temperature, inflation pressure etc. contributes to heat buildup which may ultimately result in tire failure. A combination of these factors might manifest as a tire failure at high speeds, the latter being an immediate cause of heat buildup. A dormant crack in the tire might develop if the temperature and pressure conditions are favorable, thus giving away at the weakest point. With regard to the temperature conditions, road conditions, inflation pressure checks etc.
X