Refine Your Search

Topic

Search Results

Viewing 1 to 11 of 11
Technical Paper

Objective Evaluation of Vehicle Driveability

1998-02-23
980204
Vehicle driveability evolves more and more as a key decisive factor for marketability and competitiveness of passenger cars, since the final decision of customers to buy a car is usually taken after a more or less intensive test drive. Car manufacturers currently evaluate vehicle driveability with subjective assessments and by having their experienced test drivers fill out form sheets. These assessments are time and cost intensive, limited in repeatability and not objective. The real customer requirements cannot be recognized in detail with this method. This paper describes a completely new approach for an objective and real time evaluation of relevant driveability criteria, for use in a vehicle and on a high dynamic test bed. The vehicle application enables an objective comparison between vehicles and an application as a development tool in many development and calibration phases, where ever fast and objective driveability results are required.
Technical Paper

Predicting Overall Seating Discomfort Based on Body Area Ratings

2007-04-16
2007-01-0346
For car manufacturers, seating comfort is becoming more and more important in distinguishing themselves from their competitors. There is a simultaneous demand for shorter development times and more comfortable seats. Comfort in automobile seats is a multi-dimensional and complex problem. Many current sophisticated measuring tools were consulted, but it is unclear on which factors one should concentrate attention when measuring comfort. The goal of this paper is to find a model in order to predict the overall seating discomfort based on body area ratings. Besides micro climate, the pressure distribution appears to be the most objective measure comprising with the clearest association with the subjective ratings. Therefore an analysis with three different test series was designed, allowing the variation of pressure on the seat surface. In parallel the subjects were asked to judge the local and the overall sensation.
Technical Paper

The Challenge of Precise Characterizing the Specific Large-Span Flows in Urea Dosing Systems for NOx Reduction

2008-04-14
2008-01-1028
The reduction of nitrous oxides in the exhaust gases of internal combustion engines using a urea water solution is gaining more and more importance. While maintaining the future exhaust gas emission regulations, like the Euro 6 for passenger cars and the Euro 5 for commercial vehicles, urea dosing allows the engine management to be modified to improve fuel economy as well. The system manufacturer Robert Bosch has started early to develop the necessary dosing systems for the urea water solution. More than 300.000 Units have been delivered in 2007 for heavy duty applications. Typical dosing quantities for those systems are in the range of 0.01 l/h for passenger car systems and up to 10 l/h for commercial vehicles. During the first years of development and application of urea dosing systems, instantaneous flow measuring devices were used, which were not operating fully satisfactory.
Technical Paper

Measuring Near Zero Automotive Exhaust Emissions - Zero Is a Very Small Precise Number

2010-04-12
2010-01-1301
In the environmentally conscious world we live in, auto manufacturers are under extreme pressure to reduce tailpipe emissions from cars and trucks. The manufacturers have responded by creating clean-burning engines and exhaust treatments that mainly produce CO2 and water vapor along with trace emissions of pollutants such as CO, THC, NOx, and CH4. The trace emissions are regulated by law, and testing must be performed to show that they are below a certain level for the vehicle to be classified as road legal. Modern engine and pollution control technology has moved so quickly toward zero pollutant emissions that the testing technology is no longer able to accurately measure the trace levels of pollutants. Negative emission values are often measured for some pollutants, as shown by results from eight laboratories independently testing the same SULEV automobile.
Technical Paper

Simulation of Complex Movement Sequences in the Product Development of a Car Manufacturer

2003-06-17
2003-01-2194
Cutting development times in car manufacturing means bringing forward the knowledge processes. Simulations based directly on CAD data reduce or replace time-consuming hardware loops significantly and therefore make a significant contribution to this. Ergonomic product design is an area that is challenged as far as the further development of virtual methods is concerned. Simulation of the static and quasi-static positions of passengers inside the car is the current state of the art in ergonomic product design. For this reason, interest is strongly focused on the simulation of complex movement processes within the context of enhancing simulation tools. For the car manufacturer, the manner in which people enter and leave the car is of particular interest. Getting into the car is the customers' first actual contact with it. It may also develop into a serious problem for car drivers, as they get older.
Technical Paper

Software-Intensive Systems in the Automotive Domain:Challenges for Research and Education

2006-04-03
2006-01-1458
Software-intensive systems and functions drive innovations in cars today. OEMs and suppliers face multiple challenges to take advantage of possibilities in this area. The rapidly developing field of software-intensive systems and software-based features in the automotive domain asks for dedicated engineering approaches, models, and processes. This paper defines the characteristics of software engineering for automotive systems and discusses methodological, technological, and organizational implications. These are used to pinpoint promising research areas as well as educational ramifications.
Technical Paper

Designing Single-Purpose or Multi-Purpose Engines for On-Road and Non-Road Use - A Platform Approach

2004-10-26
2004-01-2689
The paper gives an overview of the partially extremely complex problem when looking into commonalities and differences of the three main application areas of engines and powertrains - automotive, agricultural tractors, and industrial engines, the last being predominantly but not exclusively focused on construction equipment. The modern “platform” approach has been used in the automotive world to a large extent and the learned experiences may be of interest for the agricultural tractors and/or the construction equipment manufacturers. On the other hand the truck engine engineers and manufacturers will learn more about the special requirements of the tractor and the industrial engines fields, and thus influence concepts and development procedures and also the production of the automotive engines which in many cases serve as the basis for derivate engines.
Technical Paper

Evaluation of the Recyclability of Vehicles During the Product Development Phases

2000-04-26
2000-01-1469
In a voluntary agreement, the German automobile industry has undertaken to recover 95 percent by weight of End–of–Life Vehicles in the year 2015. In addition, the European draft directive on „End–of–Life Vehicles” recycling calls for evidence that at least than 85 percent by weight of the materials are suitable for material recycling. It is therefore essential while new vehicles are being developed to be in a position to assess their suitability for dismantling and recycling. An automobile consists of a large number of individual components, each of which must be examined separately before a well–founded statement regarding the overall recycling level can be made. For this purpose the BMW Group has developed its own dismantling software which permits virtual dismantling analysis even during a vehicle's development phase and thus enables suitability for recycling to be determined at the earliest possible time.
Technical Paper

Automated Outlier Detection in Multidimensional Driveability Data Using AVL-DRIVE

2020-12-23
2020-01-5216
With the increased number of variants, the preservation of a brand-specific vehicle DNA becomes more and more important. Paired with growing customer expectations, brand DNA can be a crucial point in the decision-making process of buying a new vehicle. Whereas the customer will assess the DNA subjectively during driving by evaluating the vehicle drive quality (“driveability”), most manufacturers are not merely relying on subjective evaluations by having test drivers perform maneuvers with prototype vehicles. Nowadays, the assessment is performed objectively during the vehicle development process. As a supporting measure, the Anstalt für Verbrennungskraftmaschinen List (AVL) has made the objective assessment tool AVL-DRIVE commercially available. Up to now, the AVL-DRIVE ratings had to be manually analyzed and checked for outliers. Low ratings and high deviations to a priori specified target values are a good starting point for the search of outliers.
Technical Paper

Achievements and Exploitation of the AUTOSAR Development Partnership

2006-10-16
2006-21-0019
Reductions of hardware costs as well as implementations of new innovative functions are the main drivers of today's automotive electronics. Indeed more and more resources are spent on adapting existing solutions to different environments. At the same time, due to the increasing number of networked components, a level of complexity has been reached which is difficult to handle using traditional development processes. The automotive industry addresses this problem through a paradigm shift from a hardware-, component-driven to a requirement- and function-driven development process, and a stringent standardization of infrastructure elements. One central standardization initiative is the AUTomotive Open System ARchitecture (AUTOSAR). AUTOSAR was founded in 2003 by major OEMs and Tier1 suppliers and now includes a large number of automotive, electronics, semiconductor, hard- and software companies.
Technical Paper

Thermal Management System for Battery Electric Heavy-Duty Trucks

2024-07-02
2024-01-2971
On the path to decarbonizing road transport, electric commercial vehicles will play a significant role. The first applications were directed to the smaller trucks for distribution traffic with relatively moderate driving and range requirements, but meanwhile, the first generation of a complete portfolio of truck sizes is developed and available on the market. In these early applications, many compromises were accepted to overcome component availability, but meanwhile, the supply chain can address the specific needs of electric trucks. With that, the optimization towards higher usability and lower costs can be moved to the next level. Especially for long-haul trucks, efficiency is a driving factor for the total costs of ownership. Besides the propulsion system, all other systems must be optimized for higher efficiency. This includes thermal management since the thermal management components consume energy and have a direct impact on the driving range.
X