Refine Your Search

Search Results

Viewing 1 to 7 of 7
Journal Article

Characterization of CH4 and CH4/H2 Mixtures Combustion in a Small Displacement Optical Engine

2013-04-08
2013-01-0852
In the last years, even more attention was paid to the alternative fuels which can allow both reducing the fuel consumption and the pollutant emissions. Among gaseous fuels, methane is considered one of the most interesting in terms of engine application. It represents an immediate advantage over other hydrocarbon fuels leading to lower CO₂ emissions; if compared to gasoline, CH₄ has wider flammable limits and better anti-knock properties, but lower flame speed. The addition of H₂ to CH₄ can improve the already good qualities of methane and compensate its weak points. In this paper a comparison was carried out between CH₄ and different CH₄/H₂ mixtures. The measurements were carried out in an optically accessible small single-cylinder, Port Fuel Injection spark ignition (PFI SI), four-stroke engine. It was equipped with the cylinder head of a commercial 250 cc motorcycle engine representative of the most popular two-wheel vehicles in Europe.
Technical Paper

Correlation between Simulated Volume Fraction Burned Using a Quasi-Dimensional Model and Flame Area Measured in an Optically Accessible SI Engine

2017-03-28
2017-01-0545
Multi-fuel operation is one of the main topics of investigative research in the field of internal combustion engines. Spark ignition (SI) power units are relatively easily adaptable to alternative liquid-as well as gaseous-fuels, with mixture preparation being the main modification required. Numerical simulations are used on an ever wider scale in engine research in order to reduce costs associated with experimental investigations. In this sense, quasi-dimensional models provide acceptable accuracy with reduced computational efforts. Within this context, the present study puts under scrutiny the assumption of spherical flame propagation and how calibration of a two-zone combustion simulation is affected when changing fuel type. A quasi-dimensional model was calibrated based on measured in-cylinder pressure, and numerical results related to the two-zone volumes were compared to recorded flame imaging.
Technical Paper

Use of Renewable Oxygenated Fuels in Order to Reduce Particle Emissions from a GDI High Performance Engine

2011-04-12
2011-01-0628
The use of oxygenated and renewable fuels is nowadays a widespread means to reduce regulated pollutant emissions produced by internal combustion engines, as well as to reduce the greenhouse impact of transportation. Besides PM, NOx and HC emissions, also the size distribution of particles emitted at the engine exhaust represent meaningful information, considering its adverse effects on the environment and human health. In this work, the results of a comprehensive investigation on the combustion characteristics and the exhaust emissions of a GDI high performance engine, fuelled with pure bio-ethanol and European gasoline, are shown. The engine is a 4-cylinder, 4-stroke, 1750 cm₃ displacement, and turbocharged. The engine was operated at different speed/load conditions and two fuel injection strategies were investigated: homogeneous charge mode and stratified charge mode.
Technical Paper

Analysis of Diesel Injector Nozzle Flow Number Impact on Emissions and Performance of a Euro5 Automotive Diesel Engine

2012-04-16
2012-01-0891
The present paper describes the results of a research project aimed at studying the impact of nozzle flow number on a Euro5 automotive diesel engine, featuring Closed-Loop Combustion Control. In order to optimize the trade-offs between fuel economy, combustion noise, emissions and power density for the next generation diesel engines, general trend among OEMs is lowering nozzle flow number and, as a consequence, nozzle hole size. In this context, three nozzle configurations have been characterized on a 2.0L Euro5 Common Rail Diesel engine, coupling experimental activities performed on multi-cylinder and optical single cylinder engines to analysis on spray bomb and injector test rigs. More in detail, this paper deeply describes the investigation carried out on the multi-cylinder engine, specifically devoted to the combustion evolution and engine performance analysis, varying the injector flow number.
Technical Paper

Experimental Investigation of a Methane-Gasoline Dual-Fuel Combustion in a Small Displacement Optical Engine

2013-09-08
2013-24-0046
In this paper the methane-gasoline dual fuel combustion was investigated. Gasoline was injected in the intake manifold (PFI fuel), while methane was injected in the combustion chamber (DI fuel), in order to reproduce a stratified combustion. The combustion process and the related engine performance and pollutant emissions were analyzed. The measurements were carried out in an optically accessible small single-cylinder four-stroke engine. It was equipped with the cylinder head of a commercial 250 cc engine representative of the most popular two-wheel vehicles in Europe. Optical measurements were performed to analyze the combustion process with high spatial and temporal resolution. In particular, optical techniques based on 2D-digital imaging were used to follow the flame front propagation and the soot and temperature concentration in the combustion chamber.
Technical Paper

Ethanol Addition Influence on Backfire Phenomena during Kickback in a Spark-Ignition Transparent Small Engine

2014-11-11
2014-32-0093
This paper investigates abnormal combustion during the cranking phase of spark-ignition small engines, specifically the occurrence of backfire at the release of the starter motor during kickback. The research focusses on the influence of fuel composition, mainly in terms of ethanol percentage, on backfire occurrence. Interest in this abnormal combustion is growing due to the increased use of fuels with different chemical-physical properties with respect to gasoline. Moreover, this issue will become even more topical due to the implementation of simple control and fuel supply systems on low cost-engines, which are widely used in developing countries. Experimentation was carried out in an optically accessible engine derived from a 4-stroke spark ignition engine for two-wheel vehicles. The test bench was instrumented and adapted in order to simulate the engine conditions that lead to anomalous ignition in the intake duct (backfire) during the reverse rotation of the engine (kickback).
Technical Paper

An experimental investigation on combustion and engine performance and emissions of a methane-gasoline dual-fuel optical engine

2014-04-01
2014-01-1329
The use of methane as supplement to liquid fuel is one of the solution proposed for the reduction of the internal combustion engine pollutant emissions. Its intrinsic properties as the high knocking resistance and the low carbon content makes methane the most promising clean fuel. The dual fuel combustion mode allows improving the methane combustion acting mainly on the methane slow burning velocity and allowing lean burn combustion mode. An experimental investigation was carried out to study the methane-gasoline dual fuel combustion. Methane was injected in combustion chamber (DI fuel) while gasoline was injected in the intake manifold (PFI fuel). The measurements were carried out in an optically accessible small single-cylinder four-stroke engine. It was equipped with the cylinder head of a commercial 250 cc motorcycles engine representative of the most popular two-wheel vehicles in Europe.
X