Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Mechanical Structure Analysis and Kinematic Simulation of the Satellite Star Gear Continuously Variable Transmission System

2008-06-23
2008-01-1688
Nowadays more and more in-depth study and continuous investigation is being carried out in the continuously variable transmission (CVT) field. A good continuously variable ratio changing action would greatly improve the performance of the transmission and offer a high fuel economy. So it would save energy and protect environment, furthermore it would reduce the working intensity and demands of driving skill on the driver. Therefore, a high efficiency and good performance continuously variable transmission (CVT) is urgently needed. This paper presents a new Satellite Star Gear (SSG) Continuously Variable Transmission System. It was created based on the Pulse Stepless Transmission with some improvements on the overrunning clutch, stepless speed change device etc. This paper introduces the basic mechanical structure and kinematical principle of a double eccentricity stepless speed change device, overrunning clutch and the whole mechanism (SSG).
Technical Paper

Design of Automatic Parallel Parking System Based on Multi-Point Preview Theory

2018-04-03
2018-01-0604
As one of advanced driver assistance systems (ADAS), automatic parking system has great market prospect and application value. In this paper, based on an intelligent vehicle platform, an automatic parking system is designed by using multi-point preview theory. The vehicle kinematics model was established, based on Ackermann steering principle. By analyzing working conditions of parallel parking, complex constraint condition of parking trajectory is established and reference trajectory based on sine wave is proposed. In addition, combined with multi-point preview theory, the design of trajectory following controller for automatic parking is completed. The cost function is designed, which consider the trajectory following effect and the degree of easy handling. The optimization of trajectory following control is completed by using the cost function.
Technical Paper

Automatic Drive Train Management System for 4WD Vehicle Based on Road Situation Identification

2018-04-03
2018-01-0987
The slip ratio of vehicle driving wheels is easily beyond a reasonable range in the complex and changeable driving conditions. In order to achieve the adaptive acceleration slip regulation of four-wheel driving (4WD) vehicle, a fuzzy control strategy of Automatic Drive Train Management (ADM) system based on road situation identification was proposed in this paper. Firstly, the influence on the control strategy of ADM system was analyzed from two aspects, which included the different road adhesion coefficients and the vehicle’s ramp driving state. In the meantime several quantitative expressions of relevant control parameters were derived. Secondly, the fuzzy logic control algorithm was adopted to design a road situation identification subsystem and a ramp driving state identification subsystem respectively. The former was based on the μ-S curve model, and the latter was based on the vehicle driving equilibrium equation.
Technical Paper

A Road Roughness Estimation Method based on PSO-LSTM Neural Network

2023-04-11
2023-01-0747
The development of intelligent and networked vehicles has enhanced the demand for precise road information perception. Detailed and accurate road surface information is essential to intelligent driving decisions and annotation of road surface semantics in high-precision maps. As one of the key parameters of road information, road roughness significantly impacts vehicle driving safety and comfort for passengers. To reach a rapid and accurate estimation of road roughness, in this study, we develop a neural network model based on vehicle response data by optimizing a long-short term memory (LSTM) network through the particle swarm algorithm (PSO), which fits non-linear systems and predicts the output of time series data such as road roughness precisely. We establish a feature dataset based on the vehicle response time domain data that can be easily obtained, such as the vehicle wheel center acceleration and pitch rate.
Technical Paper

Aero-Engine Inlet Vane Structure Optimization for Anti-Icing with Hot Air Film Using Neural Network and Genetic Algorithm

2019-06-10
2019-01-2021
An improved anti-icing design with film heating ejection slot and cover for the inlet part of aero-engine was brought out, which combines the interior jet impingement with the exterior hot air film heating and shows promising application for those parts manufactured with composite materials. A hybrid method based on the combination of the Back Propagation Neural Network (BPNN) and Genetic Algorithm (GA) is developed to optimize the anti-icing design for a typical aero-engine inlet vane in two dimensions. The optimization aims to maximize the heating performance of the hot air film, which is assessed by the heating effectiveness. The film-heating ejection angle and the cover opening angle are the two geometric variables to be optimized. Numerical model was established and validated to generate training and testing samples for BPNN, which was used to predict the objective function and find the optimal design variables in conjunction with the GA.
Technical Paper

Embedding CNN-Based Fast Obstacles Detection for Autonomous Vehicles

2018-08-07
2018-01-1622
Forward obstacles detection is one of the key tasks in the perception system of autonomous vehicles. The perception solution differs from the sensors and the detection algorithm, and the vision-based approaches are always popular. In this paper, an embedding fast obstacles detection algorithm is proposed to efficiently detect forward diverse obstacles from the image stream captured by the monocular camera. Specifically, our algorithm contains three components. The first component is an object detection method using convolution neural networks (CNN) for single image. We design a detection network based on shallow residual network, and an adaptive object aspect ratio setting method for training dataset is proposed to improve the accuracy of detection. The second component is a multiple object tracking method based on correlation filter for the adjacent images.
Technical Paper

Machine Learning Based Flight State Prediction for Improving UAV Resistance to Uncertainty

2023-12-31
2023-01-7114
Unmanned Aerial Vehicles (UAVs) encounter various uncertainties, including unfamiliar environments, signal delays, limited control precision, and other disturbances during task execution. Such factors can significantly compromise flight safety in complex scenarios. In this paper, to enhance the safety of UAVs amidst these uncertainties, a control accuracy prediction model based on ensemble learning abnormal state detection is designed. By analyzing the historical state data, the trained model can be used to judge the current state and obtain the command tracking control accuracy of the UAV at that instant. Ensemble learning offers superior classification capabilities compared to weak learners, particularly for anomaly detection in flight data. The learning efficacy of support vector machine, random forest classifier is compared and achieving a peak accuracy of 95% for the prediction results using random forest combined with adaboost model .
X