Refine Your Search

Topic

Author

Search Results

Technical Paper

Generic Methodology for Vibration and Wear Analysis to Understand Their Influences in an Electric Drivetrain

2020-09-30
2020-01-1506
The prime factor which influences noise and vibrations of electro-mechanical drives is wear at the components. This paper discusses the numerical methods developed for abrasion, vibration calculations and the coupling between wear and Noise Vibration and Harshness (NVH) models of the drive unit. The vibration domain model, initially, focuses on the calculations of mechanical excitations at the gear shafts which are generated via a nonlinear dynamic model. Furthermore, the bearings are studied for the influences on their stiffness and eventually their impact on the harmonics of the drivetrain. Later, free and forced vibrations of the complete drivetrain are simulated via a steady-state dynamic model. Consequently, the paper concentrates on the abrasion calculations at the gears. Wear is a complex process and understanding it is essential for determining the vibro-acoustics characteristics.
Journal Article

Diesel Lubricity Requirements of Future Fuel Injection Equipment

2009-04-20
2009-01-0848
This paper looks at the underlying fundamentals of diesel fuel system lubrication for the highly-loaded contacts found in fuel injection equipment like high-pressure pumps. These types of contacts are already occurring in modern systems and their severity is likely to increase in future applications due to the requirement for increased fuel pressure. The aim of the work was to characterise the tribological behavior of these contacts when lubricated with diesel fuel and diesel fuel treated with lubricity additives and model nitrogen and sulphur compounds of different chemical composition. It is essential to understand the role of diesel fuel and of lubricity additives to ensure that future, more severely-loaded systems, will be free of any wear problem in the field.
Journal Article

Particulate Matter Sensor for On Board Diagnostics (OBD) of Diesel Particulate Filters (DPF)

2010-04-12
2010-01-0307
The emissions legislation in the US and Europe introduces the need for the application of diesel particulate filters (DPF) in most diesel vehicles. In order to fulfill future OBD legislations, which include more stringent requirements on monitoring the functionality of those particulate filters, new sensors besides the differential pressure sensor are necessary. The new sensors need to directly detect the soot emission after DPF and withstand the harsh exhaust gas environment. Based on multi layer ceramic sensor technology, an exhaust gas sensor for particulate matter (EGS-PM) has been developed. The soot-particle-sensing element consists of two inter-digitated comb-like electrodes with an initially infinite electrical resistance. During the sensor operation, soot particles from the exhaust gas are collected onto the inter-digital electrodes and form conductive paths between the two electrode fingers leading to a drop of the electrical resistance.
Technical Paper

Numerical Modeling of the Dynamic Transport of Multi-Component Exhaust Gases in Oxygen Sensors

2007-04-16
2007-01-0931
Today's wide range oxygen sensors are based on the limiting current principle, where an applied voltage induces electrochemical reactions in a ceramic cell. Since the diffusive transport of exhaust gas to the electrodes is limited by a transport barrier, the resulting electric current can be related to the exhaust gas composition. A model is presented which describes the transient transport of gas mixtures from the bulk exhaust gas to the electrodes of an oxygen sensor at variable pressure and composition. The internal structure of the transport barrier was accounted for by geometrical parameters. A variety of numerical results are compared with experimental data.
Technical Paper

Numerical and Experimental Analysis of the Mass Transfer in Exhaust Gas Sensors

2007-04-16
2007-01-1144
Within the scope of this work, the convective mass transfer to the zirconia sensor element of an exhaust oxygen sensor was analyzed experimentally and numerically. For the experimental setup, a heightened model of an oxygen sensor was built from Lucite® considering the similarity theory. Mass transfer is measured based on the absorption of ammonia and subsequent immediate color reaction. For the numerical investigation, a three-dimensional model of the test rig was built. To predict the flow pattern and the species transport inside the protection tubes, the commercial CFD-Code FLUENT® is used. The model for the mass transfer to the surface is implemented through user-defined functions.
Technical Paper

Control Strategy for NOx - Emission Reduction with SCR

2003-11-10
2003-01-3362
Future emission standards for heavy-duty vehicles like Euro 4, Euro 5, US '07 require advanced engine functionality. One contribution to achieve this target is the catalytic reduction of nitrogen oxides by injection of urea water solution to the exhaust gas. An overview on a urea dosing system, also called DENOXTRONIC, is given and a dosing strategy is described.
Technical Paper

PVD-Wear Resistant Coatings of Homogeneous and Graded Ti(C,N): Residual Stresses and Mechanical Performance under Hertzian Load

2002-03-19
2002-01-1407
Ceramic protective coatings on cutting tools for steel machining are state of the art in industrial applications. Several concepts to improve the efficiency of machining processes as for instance high-speed or dry cutting yield increasing demands regarding the wear and corrosion resistance of the protective tool coatings. The generic process characteristics of PVD-coating techniques offer opportunities to tailor the coatings in terms of microstructure and residual stress states by adjusting appropriate process parameters. Besides chemical composition and microstructure the residual stresses in the coatings strongly influence their in-service performance and, are therefore important to assess and to correlate with process parameters.
Technical Paper

Time Resolved Spray Characterisation in a Common Rail Direct-Injection Production Type Diesel Engine Using Combined Mie/LIF Laser Diagnostics

2003-03-03
2003-01-1040
This study reports on laser-based diagnostics to temporally track the evolution of liquid and gaseous fuel in the cylinder of a direct injection production type Diesel engine. A two-dimensional Mie scattering technique is used to record the liquid phase and planar laser-induced fluorescence of Diesel is used to track both liquid and vaporised fuel. LIF-Signal is visible in liquid and gas phase, Mie scattering occurs only in zones where fuel droplets are present. Distinction between liquid and gaseous phase becomes therefore possible by comparing LIF- and Mie-Signals. Although the information is qualitative in nature, trends of spray evolution are accessible. Within this study a parametric variation of injection pressure, in-cylinder conditions such as gas temperature and pressure as well as piston geometry are discussed. Observations are used to identify the most sensitive parameters and to qualitatively describe the temporal evolution of the spray for real engine conditions.
Technical Paper

Temperature Compensation with Thermovariable Rate Springs in Automatic Transmissions

1991-02-01
910805
The shifting comfort of automatic transmissions of diesel engines at low temperatures can be substantially improved by using springs with temperature dependent rates in the control valves. These springs utilize the shape memory effect of Ni-Ti alloys. They provide a simple and economic way to control both shifting pressure and shifting time. The Mercedes- Benz automatic transmission uses two different springs with thermovariable rate (TVR) in the shifting pressure system to adapt the pressure in the switching elements to the lower torque of cold diesel engines. One spring is used in the shifting pressure control valve and one in the accumulator system.
Technical Paper

Laser-Based Measurements of Surface Cooling Following Fuel Spray Impingement

2018-04-03
2018-01-0273
A major source for soot particle formation in Gasoline-Direct-Injection (GDI) engines are fuel-rich zones near walls as a result of wall wetting during injection. To address this problem, a thorough understanding of the wall film formation and evaporation processes is necessary. The wall temperature before, during and after fuel impingement is an important parameter in this respect, but is not easily measured using conventional methods. In this work, a recently developed laser-based phosphor thermography technique is implemented for investigations of spray-induced surface cooling. This spatially and temporally resolved method can provide surface temperature measurements on the wetted side of the surface without being affected by the fuel-film. Zinc oxide (ZnO) particles, dispersed in a chemical binder, were deposited onto a thin steel plate obtaining a coating thickness of 17 μm after annealing.
Technical Paper

Engine Braking Systems and Retarders - An Overview from an European Standpoint

1992-11-01
922451
In particular on heavy duty commercial vehicles, the continuous braking systems “engine braking system” and “retarder”, which are independent of the service braking system, are installed to handle the continuous braking load on downhill stretches. These systems are also used to reduce lining wear and thermal loads of the service braking system. Exhaust braking systems are the most widely used form of engine braking systems. The current state-of-the-art in retarders is represented by two basic concepts, the electrodynamic retarder and the hydrodynamic retarder. A performance comparison of the different systems shows that low mountain descending speeds are the domain of engine braking systems, whereas retarders are more effective for medium and high descending speeds. The electrodynamic retarder is more favourable for lower road speeds, while the hydrodynamic retarder develops its effectiveness during higher downhill speeds.
Technical Paper

A Universal and Cost-Effective Fuel Gauge Sensor Based on Wave Propagation Effects in Solid Metal Rods

1994-03-01
940628
In recognition of safety considerations, modern fuel tanks are frequently extremely irregular in shape. This places limits on the application of conventional potentiometric sensors. Required are more universal sensors without mechanically-moving parts. These sensors should also be characterized by especially good resolution and precision in the residual-quantity range, that is, the zero point precision should be of a high order. One type of metal rod can be bent into any of a variety of shapes to provide an effective means of monitoring the fuel level. In this metal rod, the propagation characteristics of a certain type of sound wave, known as bending waves, display major variations according to the level of the surrounding medium: The waves spread more rapidly through the exposed section of the rod than through the area which remains submerged. Thus the rod's characteristic oscillation frequency varies as a function of immersion depth.
Technical Paper

Secondary Air Injection with a New Developed Electrical Blower for Reduced Exhaust Emissions

1994-03-01
940472
Secondary air injection after cold start gives two effects for reduced exhaust emissions: An exothermic reaction at the hot exhaust valves occurs, which increases the temperature of the exhaust gas. It gives sufficient air to the catalyst during the cold start fuel enrichment that is necessary to prevent driveability problems. Handicaps for the wide use of air injection include space constraints, weight and price. An electrical air blower was choosen to best satisfy all these requirements. The development steps are described. The result is a three stage radialblower with extremly high revolutions of about 18000 rpm. The system configuration and the outcome are demonstrated on the new C-Class of Mercedes-Benz. The results show emission reductions higher than 50 %, while also satisfying the development goals of noise, volume, weight and cost requirements.
Technical Paper

Development of a Single Run Method for the Determination of Individual Hydrocarbons (C2-C12) in Automotive Exhaust by Capillary Gas Chromatography

1994-03-01
940827
The California Air Resources Board (CARB) has proposed procedures for the analysis of non-methane organic gases (NMOG) to determine the ozone forming potential (OFP) of automotive exhaust. For realization of these methods two differently configured GC systems are necessary. In order to reduce the efforts concerning costs, maintenance and quality control of two analytical instruments, a single run method is developed for routine analysis. This method allows identification and quantification of individual hydrocarbons (IHC) in the range of carbon numbers C2 to C12. Analytical problems arising from high contents of water and carbon dioxide in exhaust samples are discussed. Water reduction is obtained by a Nafion® Dryer by means of membrane diffusion of polar compounds. Contamination as well as memory effects due to this sample work up are described. Sample pre-concentration of 50-200 mL diluted automotive exhaust is performed using a triple phase “mixed bed” adsorption tube at O°C.
Technical Paper

A New Design of Monolithic Particle Filters with Transverse Isotropic Property for Diesel Motors

1994-03-01
940462
The monolithic DPF made of cordierite ceramic has unsatisfactory on his fatigue or long-term strength. A new design of configuration of plugs combined with the hexagonal channels shows a transversally isotropic property, and can remove the anisotropy of monoliths with square channels. This anisotropy is assumed to be one of main reasons for the failure of monoliths with square channels regarding the experimental results. Considering the honeycomb structure as a homogeneous material based on the Boltzmann continuum can't give the correct behaviour of this structure in a FEM simulation. Another homogenization procedure using the Cosserat theory has been discussed. The FEM stress analyses with structural detail-models show that the maximal tensile stresses in the monolith with square channels exist in the diagonal (i.e. 45°-) direction, or on the edges of channels. This feature is identical with what the theory has predicted and the experimental results have shown.
Technical Paper

A Non Contact Strain Gage Torque Sensor for Automotive Servo Driven Steering Systems

1994-03-01
940629
Tapping of one or more torques (ranges 10 Nm and 60 Nm) on the steering column for the purpose of servo control must satisfy high accuracy requirements on the one hand and high safety requirements on the other hand. A suggestion for developing a low-cost solution to this problem is described below: Strain gages optimally satisfy both these requirements: However, for cost reasons, these are not applied directly to the steering column but to a prefabricated, flat steel rod which is laser welded to the torque rod of the steering column. The measuring direction of the strain gages is under 45° to the steering column axis. The strain gages are either vacuum metallized onto the support rod as a thin film or laminated in a particularly low-cost way by means of a foil-type intermediate carrier.
Technical Paper

Time-Resolved Measurement of Individual Aromatic Hydrocarbons in Automotive Exhaust at Transient Engine Operation

1995-02-01
951053
A new multicomponent exhaust gas analyzer has been applied to investigate the time-resolved concentrations of the aromatic hydrocarbon exhaust components benzene, toluene, xylene, trimethyl benzene under dynamic engine operation, such as sudden change of speed and load, misfiring and switching off the fuel mixture control. The analyzer consisting of a compact laser mass spectrometer is capable of measuring the concentrations of the individual aromatic hydrocarbon compounds simultaneously with 1 ppm sensitivity at a sampling rate of 50 Hz corresponding to a sampling period of 20 ms. High concentration peaks are observed for these substances at instationary motor operation. However, whereas the real-time concentrations of toluene, xylene, and trimethyl benzene show equal dependence on motor speed and load a different behavior has been observed for benzene even during the emission phase of single combustion cycles.
Technical Paper

Lightweight Crankcase for a New Turbo-Charged Direct Injection Diesel Engine

1997-02-24
971145
The comparison of a light weight crankcase to the production cast iron crankcase of the new Mercedes Benz 2.9-liter direct injection (DI) five-cylinder turbo diesel engine with intercooler is described. The light weight crankcase is cast from the aluminum alloy A 356 while other engine components like oil pan, timing case cover and brackets are manufactured from a magnesium alloy. This paper describes the engine design with the simultaneous calculation, the mechanical development and the acoustic measurements. In this study an engine weight reduction of about 30 kg with comparable noise emission compared to the production engine with cast iron crankcase is realized.
Technical Paper

Advanced Planar Oxygen Sensors for Future Emission Control Strategies

1997-02-24
970459
This paper presents advanced planar ZrO2 oxygen sensors being developed at Robert Bosch using a modified tetragonal partially stabilized zirconia (TZP) with high ionic conductivity, high phase stability and high thermo-mechanical strength. Green tape technology combined with highly automated thickfilm techniques allows robust and cost effective manufacturing of those novel sensing elements. Standardization of assembling parts reduces the complexity of the assembly line even in the case of different sensing principles. The sensor family meets the new requirements of modern ULEV strategies like fast light off below 10 s and linear control capability as well as high quality assurance standards. High volume production will start in 1997 for European customers.
Technical Paper

Numerical and Experimental Analysis of the Momentum and Heat Transfer in Exhaust Gas Sensors

2005-04-11
2005-01-0037
Modern zirconia oxygen sensors are heated internally to achieve an optimal detection of the oxygen concentration in the exhaust gas and fast light off time. The temperature of the gas in the exhaust pipe varies in a wide range. The zirconia sensor is cooled by radiation and forced convection caused by cold exhaust gas. If the zirconia temperature falls, the oxygen detection capability of the sensor decreases. To minimize the cooling effects, protection tubes cover the zirconia sensor. However, this is in conflict with the aim to accelerate the dynamics of the lambda sensor. In this paper, the heat transfer at the surface of a heated planar zirconia sensor with two different double protection tubes of a Bosch oxygen sensor is examined in detail. The geometric configuration of the tubes forces different flow patterns in the inner protection tube around the zirconia sensor. The zirconia sensor is internally electrically heated by a platinum heater layer.
X