Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

System Approach for NOx Reduction: Double LNT Diesel After-Treatment Architecture

2011-04-12
2011-01-1300
This paper presents an after-treatment architecture combining a close coupled NOx trap and an under floor NOx trap. Instead of simply increasing the volume of the catalyst, we propose to broaden the active temperature window by splitting the LNT along the exhaust line. In order to design this architecture, a complete 1D model of NOx trap has been developed. Validated with respect to experimental data, this model has been useful to define the two volumes of LNT, making significant savings on the test bench exploitation. However, one of the main difficulties to operate the proposed architecture is the NOx purge and sulfur poisoning management. In order to optimize the NOx and sulfur purge launches, we have developed a control strategy based on an embedded reduced LNT model. These strategies have been validated on different driving cycles, by the means of simulation and of vehicle tests using rapid prototyping tools.
Technical Paper

Development of an Improved Gravimetric Method for the Mass Measurement of Diesel Exhaust Gas Particles

2005-05-11
2005-01-2145
The Particulate Measurement Programme (PMP) works on the identification of a method to replace or complete the existing particle mass (PM) measurement method. The French PMP subgroup, composed by IFP, PSA Peugeot-Citroën, Renault and UTAC, proposes an improved gravimetric method for the measurement of emitted particles, and conducted an inter-laboratory test to evaluate its performances. The technical programme is based on tests carried out on a Euro3 Diesel passenger car (PC), tested on the New European Driving Cycle (NEDC). To achieve low particulate matter (PM) emissions, the EGR is disconnected and a paraffinic fuel is used. The regulated pollutants are also measured. It is shown that the multiple filter weighing and a 0.1 μg balance instead of a 1 μg one are not necessary, as the first weighing and the 1 μg balance performances are satisfactory for type-approval purposes.
Technical Paper

Steering Wheel Torque Rendering: Measure of Driver Discrimination Capabilities

2014-04-01
2014-01-0447
By the action on the steering wheel, the driver has the capability to control the trajectory of its vehicle. Nevertheless, the steering wheel has also the role of information provider to the driver. In particular, the torque level at the steering wheel informs the driver about the interaction between the vehicle and the road. This information flow is natural due to the mechanical chain between the road and the steering wheel. Many studies have shown that steering wheel torque feedback is crucial to ensure the control of the vehicle. In the context of uncoupled steering (steer-by-wire vehicle or driving simulators), the torque rendering on the steering wheel is a major challenge. In addition, of the trajectory control, the quality of this torque is a key for the immersion of drivers in virtual environment such as in driving simulators. The torque-rendering loop is composed of different steps.
Technical Paper

Noise pollution – A breakthrough approach.

2024-06-12
2024-01-2919
Authors : Thomas ANTOINE, Christophe THEVENARD, Pierrick BOTTA, Jerome DESTREE, Alain Le Quenven Future noise emission limits for passenger car are going to lower levels by 2024 (Third phase of R51-03, with a limit of 68dBA for the pass by noise) –Social cost of noise for France in 2021, shows clearly that the dominant source of noise pollution is indeed road traffic (81 Bn€ for a total of 146 Bn€) This R51 regulation is meant to lower the noise pollution from road traffic, however when looking closer to the sound source and their contributions, in particular the tire/road noise interaction, the environmental efficiency of this regulation is questionable. Indeed: Tire/Road interaction involves tires characteristics, that are constrained by an array of specification for energy efficiency, safety (wet grip, braking, etc…) and it has been proven that there is a physical limit to what could be expected from the tire as far as tire/road interaction noise is concerned.
X