Refine Your Search

Topic

Author

Search Results

Video

Challenges in Automotive Electrification and Powertrain Component Development

2011-11-07
An overview of Daimler?s progression to advance powertrain technology in a growth industry shows many different solutions to improvement in transportation. Daimler continues to make breakthroughs in technology development and application building on 125 years of automotive development. Optimization of current powertrains will enable a significant gain in CO2/mi reductions, that dependent on product mix can be augmented with additional technologies. There is however no bypass to some form of electrification, enabling efficiency gains and alternative forms of power supply. Development of hybrid powertrains continues in an established manner and enhanced development of further electrified powertrains are in development. Organizationally and technically, significant skills and adjustments need to continue to be undertaken enabling OEMs and in particular the supply base to develop optimized solutions efficiently. The outlook is bright for novel component development and innovation.
Journal Article

Influence of a Multispark Ignition System on the inflammation in a Spray-guided Combustion Process

2009-09-13
2009-24-0117
This study describes tests with a fast clocked multispark ignition system intended to improve the stability of inflammation during charge stratification. The advantage of this ignition system is the capability it provides to adjust the number of sparks, the duration of single sparks and the intensity of the primary current. The basic engine test parameters were first set in an optically accessible pressure chamber under conditions approximating an engine. Two strategies were examined to analyze their effect on inflammation in stratified charge mode. On the one hand, the multispark ignition (MSI) system allows implementing an intermittent spark sequence in the spark gap between the spark plug electrodes. On the other hand, precisely timed pulsing of spark energy into the plasma channel during charge motion can generate a very large deflection of the ignition spark.
Journal Article

Soot Simulation under Diesel Engine Conditions Using a Flamelet Approach

2009-11-02
2009-01-2679
The subject of this work is 3D numerical simulations of combustion and soot emissions for a passenger car diesel engine. The CFD code STAR-CD version 3.26 [1] is used to resolve the flowfield. Soot is modeled using a detailed kinetic soot model described by Mauss [2]. The model includes a detailed description of the formation of polyaromatic hydrocarbons. The coupling between the turbulent flowfield and the soot model is achieved through a flamelet library approach, with transport of the moments of the soot particle size distribution function as outlined by Wenzel et al. [3]. In this work we extended this approach by considering acetylene feedback between the soot model and the combustion model. The model was further improved by using new gas-phase kinetics and new fitting procedures for the flamelet soot library.
Journal Article

Ultra Boost for Economy: Extending the Limits of Extreme Engine Downsizing

2014-04-01
2014-01-1185
The paper discusses the concept, design and final results from the ‘Ultra Boost for Economy’ collaborative project, which was part-funded by the Technology Strategy Board, the UK's innovation agency. The project comprised industry- and academia-wide expertise to demonstrate that it is possible to reduce engine capacity by 60% and still achieve the torque curve of a modern, large-capacity naturally-aspirated engine, while encompassing the attributes necessary to employ such a concept in premium vehicles. In addition to achieving the torque curve of the Jaguar Land Rover naturally-aspirated 5.0 litre V8 engine (which included generating 25 bar BMEP at 1000 rpm), the main project target was to show that such a downsized engine could, in itself, provide a major proportion of a route towards a 35% reduction in vehicle tailpipe CO2 on the New European Drive Cycle, together with some vehicle-based modifications and the assumption of stop-start technology being used instead of hybridization.
Journal Article

A Practical Simulation Procedure using CFD to Predict Flow Induced Sound of a Turbocharger Compressor

2015-04-14
2015-01-0662
A turbocharger is currently widely used to boost performance of an internal combustion engine. Generally, a turbocharger consists of a compressor which typically is driven by an exhaust turbine. The compressor will influence how the low frequency engine pulsation propagates in the intake system. The compressor will also produce broad-band flow induced sound due to the turbulence flow and high frequency narrowband tonal sound which is associated with rotating blade pressures. In this paper, a practical simulation procedure based on a computational fluid dynamics (CFD) approach is developed to predict the flow induced sound of a turbocharger compressor. In the CFD model of turbocharger compressor, the unsteady, moving wheel, detached eddy simulation (DES) approach are utilized. In this manner, both the broad-band and narrow-band flow induced sound are directly resolved in the CFD computation.
Journal Article

Optical Investigations of the Ignition-Relevant Spray Characteristics from a Piezo-Injector for Spray-Guided Spark-Ignited Engines

2015-01-01
2014-01-9053
The spray-guided combustion process offers a high potential for fuel savings in gasoline engines in the part load range. In this connection, the injector and spark plug are arranged in close proximity to one another, as a result of which mixture formation is primarily shaped by the dynamics of the fuel spray. The mixture formation time is very short, so that at the time of ignition the velocity of flow is high and the fuel is still largely present in liquid form. The quality of mixture formation thus constitutes a key aspect of reliable ignition. In this article, the spray characteristics of an outward-opening piezo injector are examined using optical testing methods under pressure chamber conditions and the results obtained are correlated with ignition behaviour in-engine. The global spray formation is examined using high-speed visualisation methods, particularly with regard to cyclical fluctuations.
Journal Article

Use of an Eulerian/Lagrangian Framework to Improve the Air Intake System of an Automobile with Respect to Snow Ingress

2017-03-28
2017-01-1319
A simulation approach to predict the amount of snow which is penetrating into the air filter of the vehicle’s engine is important for the automotive industry. The objective of our work was to predict the snow ingress based on an Eulerian/Lagrangian approach within a commercial CFD-software and to compare the simulation results to measurements in order to confirm our simulation approach. An additional objective was to use the simulation approach to improve the air intake system of an automobile. The measurements were performed on two test sites. On the one hand we made measurements on a natural test area in Sweden to reproduce real driving scenarios and thereby confirm our simulation approach. On the other hand the simulation results of the improved air intake system were compared to measurements, which were carried out in a climatic wind tunnel in Stuttgart.
Technical Paper

Performance Improvement of an Asymmetric Twin Scroll Turbocharger Turbine through Secondary Flow Injection

2020-04-14
2020-01-1011
A powerful and efficient turbocharger turbine benefits the engine in many aspects, such as better transient response, lower NOx emissions and better fuel economy. The turbine performance can be further improved by employing secondary flow injection through an injector over the shroud section. A secondary flow injection system can be integrated with a conventional turbine without affecting its original design parameters, including the rotor, volute, and back disk. In this study, a secondary flow injection system has been developed to fit for an asymmetric twin-scroll turbocharger turbine, which was designed for a 6-cylinder heavy-duty diesel engine, aiming at improving the vehicle’s performance at 1100 rpm under full-loading conditions. The shape of the flow injector is similar to a single-entry volute but can produce the flow angle in both circumferential and meridional directions when the flow leaves the injector and enters the shroud cavity.
Journal Article

A Study of Newly Developed HCCI Engine With Wide Operating Range Equipped With Blowdown Supercharging System

2011-08-30
2011-01-1766
To extend the operating range of a gasoline HCCI engine, the blowdown supercharging (BDSC) system and the EGR guide were developed and experimentally examined. The concepts of these techniques are to obtain a large amount of dilution gas and to generate a strong in-cylinder thermal stratification without an external supercharger for extending the upper load limit of HCCI operation whilst keeping dP/dθmax and NOx emissions low. Also, to attain stable HCCI operation using the BDSC system with wide operating conditions, the valve actuation strategy in which the amount of dilution gas is smaller at lower load and larger at higher load was proposed. Additionally to achieve multi-cylinder HCCI operation with wide operating range, the secondary air injection system was developed to reduce cylinder-to-cylinder variation in ignition timing. As a result, the acceptable HCCI operation could be achieved with wide operating range, from IMEP of 135 kPa to 580 kPa.
Journal Article

Experimental and Numerical Investigation of the Under Hood Flow with Heat Transfer for a Scaled Tractor-Trailer

2012-04-16
2012-01-0107
Aerodynamic design and thermal management are some of the most important tasks when developing new concepts for the flow around tractor-trailers. Today, both experimental and numerical studies are an integral part of the aerodynamic and thermal design processes. A variety of studies have been conducted how the aerodynamic design reduces the drag coefficient for fuel efficiency as well as for the construction of radiators to provide cooling on tractor-trailers. However, only a few studies cover the combined effect of the aerodynamic and thermal design on the air temperature of the under hood flow [8, 13, 16, 17, 20]. The objective of this study is to analyze the heat transfer through forced convection for a scaled Cab-over-Engine (CoE) tractor-trailer model with under hood flow. Different design concepts are compared to provide low under hood air temperature and efficient cooling of the sub components.
Journal Article

Predicted Roughness Perception for Simulated Vehicle Interior Noise

2012-06-13
2012-01-1561
In the past the exterior and interior noise level of vehicles has been largely reduced to follow stricter legislation and due to the demand of the customers. As a consequence, the noise quality and no longer the noise level inside the vehicle plays a crucial role. For an economic development of new powertrains it is important to assess noise quality already in early development stages by the use of simulation. Recent progress in NVH simulation methods of powertrain and vehicle in time and frequency domain provides the basis to pre-calculated sound pressure signals at arbitrary positions in the car interior. Advanced simulation tools for elastic multi-body simulation and novel strategies to measure acoustical transfer paths are combined to achieve this goal. In order to evaluate the obtained sound impression a roughness prediction model has been developed. The proposed roughness model is a continuation of the model published by Hoeldrich and Pflueger.
Technical Paper

Bluetec Emission Control System for the US Tier 2 Bin 5 Legislation

2008-04-14
2008-01-1184
While the market share for diesel engines for LD vehicles in Europe has grown continuously in the past years, the market share in North America is still negligible. Until now, it has been possible to fulfill the limits for nitrogen oxides (NOx) both in Europe and in North America by engine measures alone, without using an active NOx aftertreatment system. With the introduction of Tier II Bin 8 and Tier II Bin 5 emissions legislation in the US in 2007, most new diesel applications will now require NOx aftertreatment. One of the possible technologies for the reduction of nitrogen oxides in lean exhaust gas is the NOx storage catalyst which has become the generally-accepted choice for engines with gasoline direct injection systems and which is also utilized in the current diesel Bluetec I systems from Daimler. For heavier applications urea-SCR is the preferred technology to fulfill NOx legislation limits.
Technical Paper

BLUETEC Diesel Technology - Clean, Efficient and Powerful

2008-04-14
2008-01-1182
Diesel engines have a strong contribution to the CO2 reduction in Europe in the past years. To enable these C02 reduction potential to the US market Mercedes Benz developed the BLUETEC technology for light duty diesel engines. The BLUETEC technology contains an optimized diesel engine and combustion system, an aftertreatment system with DOC, DPF and an active SCR catalyst with AdBlue Dosing System and an enhanced ECU functionality and calibration. For fulfilling the world strongest emission limits of the US legislation there have to be solutions developed for the handling of AdBlue under cold climate below -11°C, managing the refilling event, and the onboard diagnostic. To ensure the emission stability over full useful life on high NOx conversions level, intensive testing of the catalyst technology had to be done. In addition there are self learning functionalities for adapting the dosing strategy to ensure the maximum NOx performance.
Technical Paper

New V6-Diesel-Engine for the Daimler Van “Sprinter” Certified to Emission-Regulation NAFTA2007

2008-04-14
2008-01-1194
The new Sprinter targets the USA and Canada markets nationwide to reconfirm Daimlers statement for Diesel engine in vans. Consequentially, the MY2007 Sprinter follows his successful predecessor as again the first - and up to now the only - Diesel vehicle in its class now meeting even the strict EPA07 requirement in California. For the growing market in North America an unique development for the successor for the previous 5-cylinder Diesel Sprinter had been made. The new 3 liter V6 Diesel engine is based on numerous corporate wide versions from Mercedes and Chrysler Passenger cars and SUVs and has its roots also in smaller and larger Mercedes vans. Effective January 2007 the NAFTA04 requirements have been replaced by the NAFTA07 values. Meeting those led to significant changes of the latest Sprinter in European EURO4 version. Both, engine and exhaust hardware as well as the ECU-data had been modified consequentially.
Technical Paper

Efficient 3-D CFD Combustion Modeling with Transient Flamelet Models

2008-04-14
2008-01-0957
A transient interactive flamelet model and a transient flamelet library based model are used to model a medium-duty diesel fueled engine operating in PCCI mode. The simulations are performed with and without the source term accounting for evaporation in the mixture fraction variance equation. Reasonable agreement is found with the experiments with both models. The effect of the evaporation source term in the mixture fraction variance equation is different for the different transient flamelet approaches. For the transient interactive flamelet model the ignition onset is delayed as a consequence of the higher mixture fraction variance, which leads to a higher scalar dissipation rate. The evaporation source term does not affect the global characteristics of the ignition event for the transient flamelet progress variable model, but locally the initial combustion is occurring differently.
Technical Paper

Virtual Transfer Path Analysis at Daimler Trucks

2009-05-19
2009-01-2243
As for passenger cars, the overall noise and vibration comfort in commercial trucks and busses becomes an increasingly important sales argument. In order to effectively reduce the noise and vibration levels it is required to identify possible NVH issues at an early stage in the vehicle development process. For this reason a so-called “Virtual Transfer Path Analysis” (VTPA) method has been implemented which combines the results obtained from the conventional multi-body simulation and finite element method approaches. The resulting VTPA tool enables Daimler Trucks to systematically investigate and predict the complex interaction between powertrain excitation and the resulting vehicle response well before hardware prototypes become available. An overview of the theory is presented as well as the practical application and outcome of the technique applied in a past product development.
Technical Paper

Specifics of Daimler's new SCR system (BLUETEC) in the Diesel Sprinter Van - Certified for NAFTA 2010

2010-04-12
2010-01-1172
Beginning in 2010, Daimler's well-known Diesel Sprinter van has to fulfill the new and clearly tighter NOx emission standards of NAFTA10 (EPA, CARB). This requires an integrated approach of further engine optimizations and the implementation of an innovative exhaust aftertreatment technology. The goal was to develop an overall concept which meets simultaneously the tightened emission standards (including OBD limits) and the increasing customer demands of more power and torque without losing the high fuel efficiency of the small and highly efficient 3-liter V6 diesel engine OM642, which already has been installed in the NAFTA07 Sprinter. In the early stages of the concept phase, the most appropriate NOx aftertreatment technology and certification form (engine or vehicle) had to be selected for this specific vehicle class in the van segment with enhanced requirements to durability, economical efficiency and specific driving behavior.
Technical Paper

Investigations on Chemical Ageing of Diesel Oxidation Catalysts and Coated Diesel Particulate Filters

2010-04-12
2010-01-1212
For medium- and heavy-duty diesel engines, the development of new catalyst technologies and particulate filters is necessary to fulfill increasingly stringent emission regulations. An important aspect is the durability of the after-treatment system and therefore its efficiency over lifetime. Lubrication oil additives contain components such as phosphorous or zinc to ensure engine durability. Diesel oxidation catalyst (DOC) and coated diesel particulate filter (cDPF) catalytic coatings are negatively influenced by contamination on the surface with these components (chemical ageing). The components have a negative impact on the exhaust after-treatment systems performance. Additionally the cDPF is filled with oil ash. Engine tests are conducted to analyze the effect of lubrication oil additives on after-treatment system performance. In one study, lubrication oil with increased sulfur ash content is used.
Technical Paper

Efficient CFD Simulation Process for Aeroacoustic Driven Design

2010-10-17
2010-36-0545
The transport industries face a continuing demand from customers and regulators to improve the acoustic performance of their products: reduce noise heard by passengers and passersby; avoid exciting structural modes. In both the aerospace and automotive areas, flow-induced noise makes a significant contribution, leading to the desire to understand and optimize it through the use of simulation. Historically, the need for time-consuming, computationally expensive transient simulations has limited the application of CFD in the field of acoustics. In this paper are described efficient simulation processes that, in some instances, remove the requirement for transient analyses, or significantly reduce the total process time through intelligent pre-processing. We will outline this process and provide both automotive and aerospace industrial examples, including analyses of highly complex geometries found in real life.
Technical Paper

Challenges for the Next Generation of BlueTEC Emission Technology

2011-04-12
2011-01-0294
Mercedes-Benz BlueTEC passenger cars have been on the cutting edge of clean diesel technology since 2006. These BlueTEC vehicles furthermore passed millions of kilometers in the hands of customers. SCR-equipped passenger cars already meet the most stringent exhaust emissions standards in international markets such as the USA, Europe and Japan. Diesel engines with BlueTEC technology also reduce CO₂ emissions and provide the high torque and performance associated with the diesel engine in addition to keeping exhaust emissions at the lowest possible level. Nowadays the requirements for SCR emission concepts are increasing continuously. In fact the emission legislation is getting stricter with the LEVIII emission standards in 2015. Additionally the requirements and effort for on-board diagnosis are increasing year after year. In combination with ambitious CO₂ targets all these issues constitute the further challenges of BlueTEC SCR emission concepts for worldwide markets.
X