Refine Your Search

Search Results

Viewing 1 to 9 of 9
Journal Article

Investigation of Tire-Road Noise with Respect to Road Induced Wheel Forces and Radiated Airborne Noise

2014-06-30
2014-01-2075
Low interior noise levels in combination with a comfortable sound is an important task for passenger cars. Due to the reduction of many noise sources over the last decades, nowadays tire-road noise has become one of the dominant sources for the interior noise. Especially for manufactures of luxury cars, the reduction of tire-road noise is a big challenge and therefore a central part of NVH development. The knowledge of the noise transmission behavior based on the characteristics of the relevant sources is a fundamental of a modern NVH - development process. For tire-road noise the source characteristics can be described by wheel forces and radiated airborne noise. In combination with the related vehicle transfer functions it is possible to describe the noise transmission behavior in detail. A method for estimating wheel forces and radiated airborne noise is presented.
Journal Article

Coupling CFD with Vibroacoustic FE Models for Vehicle Interior Low-Frequency Wind Noise Prediction

2015-06-15
2015-01-2330
With the reduction of engine and road noise, wind has become an important source of interior noise when cruising at highway speed. The challenges of weight reduction, performance improvement and reduced development time call for stronger support of the development process by numerical methods. Computational Fluid Dynamics (CFD) and finite element (FE) vibroacoustic computations have reached a level of maturity that makes it possible and meaningful to combine these methods for wind noise prediction. This paper presents a method used for coupling time domain CFD computations with a finite element vibroacoustic model of a vehicle for the prediction of low-frequency wind noise below 500 Hz. The procedure is based on time segmentation of the excitation load and transformation into the frequency domain for the vibroacoustic computations. It requires simple signal processing and preserves the random character as well as the spatial correlation of the excitation signal.
Journal Article

Prediction of Interior Noise in a Sedan Due to Exterior Flow

2015-06-15
2015-01-2331
Aero-vibro-acoustic prediction of interior noise associated with exterior flow requires accurate predictions of both fluctuating surface pressures across the exterior of a vehicle and efficient models of the vibro-acoustic transmission of these surface pressures to the interior of a vehicle. The simulation strategy used in this paper combines both CFD and vibro-acoustic methods. An accurate excitation field (which accounts for both hydrodynamic and acoustic pressure fluctuations) is calculated with a hybrid CAA approach based on an incompressible unsteady flow field with an additional acoustic wave equation. To obtain the interior noise level at the driver's ears a vibro-acoustic model is used to calculate the response of the structure and interior cavities. The aero-vibro-acoustic simulation strategy is demonstrated for a Mercedes-Benz S-class and the predictions are compared to experimental wind tunnel measurements.
Journal Article

Methods for Measuring, Analyzing and Predicting the Dynamic Torque of an Electric Drive Used in an Automotive Drivetrain

2015-06-15
2015-01-2363
The driving comfort is an important factor for buying decisions. For the interior noise of battery electric vehicles (BEV) high frequency tonal orders are characteristic. They can for example be caused by the gearbox or the electric drive and strongly influence the perception and rating of the interior noise by the customer. In this contribution methods for measuring, analyzing and predicting the excitation by the dynamic torque of the electric drive are presented. The dynamic torque of the electric drive up to 3.5 kHz is measured on a component test bench with the help of high frequency, high precision torque transducer. The analysis of the results for the order of interest shows a good correlation with the acoustic measurements inside the corresponding vehicle. In addition an experimental and numerical modal analysis of the rotor of the electric drive are performed.
Journal Article

Flow Induced Interior Noise Prediction of a Passenger Car

2016-06-15
2016-01-1809
Prediction of flow induced noise in the interior of a passenger car requires accurate representations of both fluctuating surface pressures across the exterior of the vehicle and efficient models of the vibro-acoustic transmission of these surface pressures to the driver’s ear. In this paper, aeroacoustic and vibro-acoustic methods are combined in order to perform an aero-vibro-acoustic analysis of a Mercedes-Benz A-class. The exterior aero-acoustic method consists of a time domain incompressible Detached Eddy Simulation (DES) and an acoustic wave equation. The method is extended in this paper to account for convection effects when modelling the exterior sound propagation. The interior vibro-acoustic model consists of a frequency domain Finite Element (FE) model of the side glass combined with a generalized Statistical Energy Analysis (SEA) model of the interior cabin.
Journal Article

Predicted Roughness Perception for Simulated Vehicle Interior Noise

2012-06-13
2012-01-1561
In the past the exterior and interior noise level of vehicles has been largely reduced to follow stricter legislation and due to the demand of the customers. As a consequence, the noise quality and no longer the noise level inside the vehicle plays a crucial role. For an economic development of new powertrains it is important to assess noise quality already in early development stages by the use of simulation. Recent progress in NVH simulation methods of powertrain and vehicle in time and frequency domain provides the basis to pre-calculated sound pressure signals at arbitrary positions in the car interior. Advanced simulation tools for elastic multi-body simulation and novel strategies to measure acoustical transfer paths are combined to achieve this goal. In order to evaluate the obtained sound impression a roughness prediction model has been developed. The proposed roughness model is a continuation of the model published by Hoeldrich and Pflueger.
Technical Paper

Prediction of Wheel Forces and Moments and Their Influence to the Interior Noise

2016-06-15
2016-01-1834
This paper describes the prediction process of wheel forces and moments via indirect transfer path analysis, followed by an analysis of the influence of wheel variants and suspension modifications. It proposes a method to calculate transmission of noise to the vehicle interior where wheel forces and especially moments were taken into account. The calculation is based on an indirect transfer path analysis with geometrical modifications of the frequency response functions. To generate high quality broadband results, this paper also points out some of the main clearance cutting criteria. The method has been successfully implemented to show the influence of wheel tire combinations as well as the influence of suspension modifications. Case studies have been performed and will be presented in this paper. Operational noise and vibration measurements have been carried out on Daimler NVH test tracks. The frequency response functions were estimated in an acoustic laboratory.
Technical Paper

CFD-Based Wave-Number Analysis of Side-View Mirror Aeroacoustics towards Aero-Vibroacoustic Interior Noise Transmission

2013-04-08
2013-01-0640
It has been shown that internal transmission of wind noise is dependent on the external aerodynamic and acoustic excitation around the automobile. Flow over the A-pillar and side-view mirror induces strongly convecting turbulence and associated acoustics which excite the side-glass. A useful tool to understand and quantify these physics is to perform temporal Fourier analysis (auto-spectra) and spatial Fourier analysis (cross-spectra and wave-number decomposition). This study demonstrates the uses of wave-number decomposition to quantify the mechanisms associated with turbulent convection and acoustical propagation. A CFD computation using the commercial codes STAR-CCM+ is performed for the flow over a generalized side-view mirror in a freestream of 38m/s. LES-enabled turbulence is solved in a fully compressible framework so as to capture all the local acoustical propagation well beyond 3kHz.
Technical Paper

CAE-Based Prediction of Aero-Vibro-Acoustic Interior Noise Transmission for a Simple Test Vehicle

2014-04-01
2014-01-0592
The interior noise in a vehicle that is due to flow over the exterior of the vehicle is often referred to as ‘windnoise’. In order to predict interior windnoise it is necessary to characterize the fluctuating surface pressures on the exterior of the vehicle along with vibro-acoustic transmission to the vehicle interior. For example, for greenhouse sources, flow over the A-pillar and side-view mirror typically induces both turbulence and local aeroacoustic sources which then excite the glass, and window seals. These components then transmit noise and vibration to the vehicle interior. Previous studies by the authors have demonstrated validated CFD (Computational Fluid Dynamics) techniques which give insight into the flow-noise source mechanisms. The studies also made use of post-processing based on temporal and spatial Fourier analysis in order to quantify the amount of energy in the flow at convective and acoustic wavenumbers.
X