Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Power Dense and Robust Traction Power Inverter for the Second-Generation Chevrolet Volt Extended-Range EV

2015-04-14
2015-01-1201
The Chevrolet Volt is an electric vehicle with extended-range that is capable of operation on battery power alone, and on engine power after depletion of the battery charge. First generation Chevrolet Volts were driven over half a billion miles in North America from October 2013 through September 2014, 74% of which were all-electric [1, 12]. For 2016, GM has developed the second-generation of the Volt vehicle and “Voltec” propulsion system. By significantly re-engineering the traction power inverter module (TPIM) for the second-generation Chevrolet Volt extended-range electric vehicle (EREV), we were able to meet all performance targets while maintaining extremely high reliability and environmental robustness. The power switch was re-designed to achieve efficiency targets and meet thermal challenges. A novel cooling approach enables high power density while maintaining a very high overall conversion efficiency.
Journal Article

Evaluation of Cu-Based SCR/DPF Technology for Diesel Exhaust Emission Control

2008-04-14
2008-01-0072
Recently, a new technology, termed 2-way SCR/DPF by the authors, has been developed by several catalyst suppliers for diesel exhaust emission control. Unlike a conventional emission control system consisting of an SCR catalyst followed by a catalyzed DPF, a wall-flow filter is coated with SCR catalysts for controlling both NOx and PM emissions in a single catalytic converter, thus reducing the overall system volume and cost. In this work, the potential and limitations of the Cu/Zeolite-based SCR/DPF technology for meeting future emission standards were evaluated on a pick-up truck equipped with a prototype light-duty diesel engine.
Journal Article

The Electrification of the Automobile: From Conventional Hybrid, to Plug-in Hybrids, to Extended-Range Electric Vehicles

2008-04-14
2008-01-0458
A key element of General Motors' Advanced Propulsion Technology Strategy is the electrification of the automobile. The objectives of this strategy are reduced fuel consumption, reduced emissions and increased energy security/diversification. The introduction of hybrid vehicles was one of the first steps as a result of this strategy. To determine future opportunities and direction, an extensive study was completed to better understand the ability of Plug-in Hybrid Electric Vehicles (PHEV) and Extended-Range Electric Vehicles (E-REV) to address societal challenges. The study evaluated real world representative driving datasets to understand actual vehicle usage. Vehicle simulations were conducted to evaluate the merits of PHEV and E-REV configurations. As derivatives of conventional full hybrids, PHEVs have the potential to deliver a significant reduction in petroleum usage.
Technical Paper

Gear Mesh Excitation Models for Assessing Gear Rattle and Gear Whine of Torque Transmission Systems with Planetary Gear Sets

2007-05-15
2007-01-2245
This paper presents four methodologies for modeling gear mesh excitations in simple and compound planetary gear sets. The gear mesh excitations use simplified representations of the gear mesh contact phenomenon so that they can be implemented in a numerically efficient manner. This allows the gear mesh excitations to be included in transmission system-level, multibody dynamic models for the assessment of operating noise and vibration levels. After presenting the four approaches, a description is made regarding how they have been implemented in software. Finally, example models are used to do a comparison between the methods
Technical Paper

NVH Analysis of Balancer Chain Drives with the Compliant Sprocket of the Crankshaft with a Dual-Mass Flywheel for an Inline-4 Engine

2007-05-15
2007-01-2415
The work presented in this paper outlines the design and development of a compliant sprocket for balancer drives in an effort to reduce the noise levels related to chain-sprocket meshing. An experimental observation of a severe chain noise around a resonant engine speed with the Dual-Mass Flywheel (DMF) and standard build solid (fixed) balancer drive sprocket. Torsional oscillation at the crankshaft nose at full load is induced by uneven running of crankshaft with a dual-mass flywheel system. This results in an increase of the undesirable impact noise caused by the meshing between the chain-links and the engagement/disengagement regions of sprockets, and the clatter noise from the interaction between the vibrating chain and the guides. This paper evaluates and discusses the benefits that the compliant sprocket design provided. A multi-body dynamics system (MBS) model of the balancer chain drive has been developed, validated, and used to investigate the chain noise.
Technical Paper

Computational Aeroacoustics Investigation of Automobile Sunroof Buffeting

2007-05-15
2007-01-2403
A numerical investigation of automobile sunroof buffeting on a prototype sport utility vehicle (SUV) is presented, including experimental validation. Buffeting is an unpleasant low frequency booming caused by flow-excited Helmholtz resonance of the interior cabin. Accurate prediction of this phenomenon requires accounting for the bi-directional coupling between the transient shear layer aerodynamics (vortex shedding) and the acoustic response of the cabin. Numerical simulations were performed using the PowerFLOW code, a CFD/CAA software package from Exa Corporation based on the Lattice Boltzmann Method (LBM). The well established LBM approach provides the time-dependent solution to the compressible Navier-Stokes equations, and directly captures both turbulent and acoustic pressure fluctuations over a wide range of scales given adequate computational grid resolution.
Technical Paper

Design of a Dual Wall Air Gap Exhaust Manifold

1998-02-23
980045
The new regulations to reduce emissions have resulted in the development of new techniques to maintain or enhance competitive performance. A requirement for the manifold is to help meet the reduction in cold start emissions, particularly during the transient conditions from start to 100 seconds following the Federal Test Procedures for vehicle emissions. Finite element computer models were developed to predict inner and outer wall temperatures, and to determine structural soundness. Tests were performed to assure that noise levels were minimized. Dynamometer lab and field tests were performed to verify that the manifold would meet the design requirements. From the results of these tests and analyses, modifications were made to the weld and manufacturing techniques to improve product life and reduce noise. Dual wall manifolds have proven durability to meet high exhaust gas temperatures up to 1650°F (900°C), while meeting the performance, noise, and weight reduction goals.
Technical Paper

SAE Standard Procedure J2747 for Measuring Hydraulic Pump Airborne Noise

2007-05-15
2007-01-2408
This work discusses the development of SAE procedure J2747, “Hydraulic Pump Airborne Noise Bench Test”. This is a test procedure describing a standard method for measuring radiated sound power levels from hydraulic pumps of the type typically used in automotive power steering systems, though it can be extended for use with other types of pumps. This standard was developed by a committee of industry representatives from OEM's, suppliers and NVH testing firms familiar with NVH measurement requirements for automotive hydraulic pumps. Details of the test standard are discussed. The hardware configuration of the test bench and the configuration of the test article are described. Test conditions, data acquisition and post-processing specifics are also included. Contextual information regarding the reasoning and priorities applied by the development committee is provided to further explain the strengths, limitations and intended usage of the test procedure.
Technical Paper

CFD-based Robust Optimization of Front-end Cooling Airflow

2007-04-16
2007-01-0105
Development and integration of the cooling system for an automotive vehicle requires a balancing act between several performance and styling objectives. The cooling system needs to provide sufficient air for heat rejection with minimal impact on the aerodynamic drag, styling requirements and other criteria. An optimization of various design parameters is needed to develop a design to meet these objectives in a short amount of time. Increase in the accuracy of the numerical predictions and reduction in the turn-around time has made it possible for Computational Fluid Dynamics (CFD) to be used early in the design phase of the vehicle development. This study shows application of the CFD for robust design of the engine cooling system.
Technical Paper

Dynamic Moving Mesh CFD Study of Semi-truck Passing a Stationary Vehicle with Hood Open

2007-04-16
2007-01-0111
This paper examines the aerodynamic forces on the open hood of a stationary vehicle when another large vehicle, such as an 18-wheel semi-truck, passes by at high speed. The problem of semi-truck passing a parked car with hood open is solved as a transient two-vehicle aerodynamics problem with a Dynamic Moving Mesh (DMM) capability in commercial CFD software package FLUENT. To assess the computational feasibility, a simplified compact car / semi-truck geometry and CFD meshes are used in the first trial example. At 70 mph semi-truck speed, the CFD results indicate a peak aerodynamic force level of 20N to 30N on the hood of the car, and the direction of the net forces and moments on the hood change multiple times during the passing event.
Technical Paper

Hybrid Technique Based on Finite Element and Experimental Data for Automotive Applications

2007-04-16
2007-01-0466
This paper presents the hybrid technique application in identifying the noise transfer paths and the force transmissibility between the interfaces of the different components in the vehicle. It is the stiffness based formulation and is being applied for the low to mid frequency range for the vibration and structure borne noise. The frequency response functions such as dynamic compliance, mobility, inertance, and acoustic sensitivity, employed in the hybrid method, can either be from the test data or finite element solution or both. The Source-Path-Receiver concept is used. The sources can be from the road surface, engine, transmission, transfer case, prop-shaft, differential, rotating components, chain drives, pumps, etc., and the receiver can be driver/passenger ears, steering column, seats, etc.
Technical Paper

Prediction of Brake Lining Life Using an Energy-Based CAE Approach

2007-04-16
2007-01-1019
Due to competitive pressures and the need to rapidly develop new products for the automotive marketplace, the automotive industry has to rapidly develop and validate automotive subsystems and components. While many CAE tools are employed to decrease the time needed for a number of brake engineering tasks such as stress analysis, brake system sizing, thermo-fluid analysis, and structural dynamics, brake lining wear and the associated concept of “lining life” are still predominantly developed and validated through resource intensive public road vehicle testing. The goal of this paper is to introduce and detail an energy-based, lumped-parameter CAE approach to predict brake lining life in passenger cars and light trucks.
Technical Paper

Future Truck Steering Effort Optimization

2007-04-16
2007-01-1155
In an endeavor to improve upon historically subjective and hardware-based steering tuning development, a team was formed to find an optimal and objective solution using Design For Six Sigma (DFSS). The goal was to determine the best valve assembly design within a hydraulic power-steering assist system to yield improved steering effort and feel robustness for all vehicle models in a future truck program. The methodology utilized was not only multifaceted with several Design of Experiments (DOEs), but also took advantage of a CAE-based approach leveraging modeling capabilities in ADAMS for simulating full-vehicle, On-Center Handling behavior. The team investigated thirteen control factors to determine which minimized a realistic, compounded noise strategy while also considering the ideal steering effort function (SEF) desired by the customer. In the end, it was found that response-dependent variability dominated the physics of our valve assembly design concept.
Technical Paper

Tank-to-Wheels Preliminary Assessment of Advanced Powertrain and Alternative Fuel Vehicles for China

2007-04-16
2007-01-1609
Well-to-Wheels analyses are important tools that provide a rigorous examination and quantify the environmental burdens associated with fuel production and fuel consumption during the vehicle use phase. Such assessments integrate the results obtained from the Well-to-Tank (WtT) and the Tank-to-Wheels (TtW) analysis components. The purpose of this study is to provide a preliminary Tank-to-Wheels assessment of the benefits associated with the introduction of alternative powertrains and fuels in the Chinese market by the year 2015 as compared to the results obtained with conventional internal combustion engine vehicles (ICEVs). An emphasis is given on the vehicles powered by those fuels that have the potential to play a major role in the Chinese auto-sector, such as: M10, M85, E10, E85, Di-methyl Ether (DME) and Coal-to-Liquids (CTL). An important conclusion of this report is that hybridization reduces fuel consumption in all propulsion systems.
Technical Paper

A Comparison of Techniques to Forecast Consumer Satisfaction for Vehicle Ride

2007-04-16
2007-01-1537
This paper presents a comparison of methods for the identification of a reduced set of useful variables using a multidimensional system. The Mahalanobis-Taguchi System and a standard statistical technique are used reduce the dimensionality of vehicle ride based on consumer satisfaction ratings. The Mahalanobis-Taguchi System and cluster analysis are applied to vehicle ride. The research considers 67 vehicle data sets for the 6 vehicle ride parameters. This paper applies the Mahalanobis-Taguchi System to forecast consumer satisfaction and provides a comparison of results with those obtained from a standard statistical approach to the problem.
Technical Paper

Stability Analysis of Solid Axle, Torque Arm Suspension Vehicles under Heavy Acceleration and Braking Events

2008-04-14
2008-01-1144
Power-hop is a self-excited and potential locally unstable torsional vibration of a vehicle's driveline, caused by stick and slip of the tire. It is especially prevalent in high-powered cars and trucks, under heavy acceleration. Torque arms have been used to reduce power-hop for many solid axle suspension vehicles, mostly trucks and old rear wheel drive sports cars. It has long been known that the shortest torque arm easily reduces power-hop, but will increase hop under braking (braking-hop). The fundamental mechanism of torque arm effects on solid axle suspension vehicles, however, has not yet been fully explained. This study explains the stability of solid axle, torque arm suspension vehicles under heavy acceleration and braking. Analytical techniques utilize conventional linear analysis and a non-linear coupling force in a 4 degree of freedom dynamic model.
Technical Paper

Compatibility Study of Fluorinated Elastomers in Automatic Transmission Fluids

2008-06-23
2008-01-1619
A compatibility study was conducted on fluorinated elastomers (FKM and FEPM) in various Automatic Transmission Fluids (ATF). Representative compounds from various FKM families were tested by three major FKM raw material producers - DuPont Performance Elastomers (DPE), Dyneon and Solvay. All involved FKM compounds were tested in a newly released fluid (ATF-A) side-by-side with conventional transmission fluids, at 150°C for various time intervals per ASTM D471. In order to evaluate the fluid compatibility limits, some FKM's were tested as long as 3024 hrs, which is beyond the normal service life of seals. Tensile strength and elongation were monitored as a function of ATF exposure time. The traditional dipolymers and terpolymers showed poor resistance to the new fluid (ATF-A). Both types demonstrated significant decreases in strength and elongation after extended fluid exposure at 150°C.
Technical Paper

Modeling Costs and Fuel Economy Benefits of Lightweighting Vehicle Closure Panels

2008-04-14
2008-01-0370
This paper illustrates a methodology in which complete material-manufacturing process cases for closure panels, reinforcements, and assembly are modeled and compared in order to identify the preferred option for a lightweight closure design. First, process-based cost models are used to predict the cost of lightweighting the closure set of a sample midsized sports utility vehicle (SUV) via material and process substitution. Weight savings are then analyzed using a powertrain simulation to understand the impact of lightweighting on fuel economy. The results are evaluated in the context of production volume and total mass change.
Technical Paper

Robust Assessment of USCAR Electrical Connectors Using Standardized Signal-To-Noise

2008-04-14
2008-01-0364
Robust assessment using standardized signal-to-noise (SS/N) is a Design For Six Sigma (DFSS) methodology used to assess the mating quality of USCAR electrical connectors. When the insertion force vs. distance relationship is compared to a standard under varying environmental and system-related noise conditions, the ideal function is transformed into a linear relationship between actual and ideal force at the sample points acquired during the mating displacement. Since the ideal function used in the robust assessment of competing designs has a linear slope of 1 through the origin, the SS/N function used is of the form 10 log (1/σ2), also known as nominal-the-best type 2. Using this assessment methodology, designs are compared, with a higher SS/N indicating lower variation from the standard.
Technical Paper

Brake Noise Analysis with Lining Wear

2008-04-14
2008-01-0823
It is well known that lining reduction through wear affects contact pressure profile and noise generation. Due to high complexity in brake noise analysis, many factors were not included in previous analyses. In this paper, a new analysis process is performed by running brake “burnishing” cycles first, followed by noise analysis. In the paper, brake lining reduction due to wear is assumed to be proportional to the applied brake pressure with ABAQUS analysis. Brake pads go through four brake application-releasing cycles until the linings settle to a more stable pressure distribution. The resulting pressure profiles show lining cupping and high pressure spots shifting. The pressure distributions are compared to TekScan measurements. Brake noise analysis is then conducted with complex eigenvalue analysis steps; the resulting stability chart is better correlated to testing when the wear is comprehended.
X