Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Exhaust Valve & Valve Seat Insert – Development for an Industrial LPG Application

2009-05-13
2009-01-1602
Automotive engines are regularly utilized in the material handling market where LPG is often the primary fuel used. When compared to gasoline, the use of gaseous fuels (LPG and CNG) as well as alcohol based fuels, often result in significant increases in valve seat insert (VSI) and valve face wear. This phenomenon is widely recognized and the engine manufacturer is tasked to identify and incorporate appropriate valvetrain material and design features that can meet the ever increasing life expectations of the end-user. Alternate materials are often developed based on laboratory testing – testing that may not represent real world usage. The ultimate goal of the product engineer is to utilize accelerated lab test procedures that can be correlated to field life and field failure mechanisms, and then select appropriate materials/design features that meet the targeted life requirements.
Journal Article

Fast and Efficient Detection of Shading of the Objects

2015-04-14
2015-01-0371
The human thermal comfort, which has been a subject of extensive research, is a principal objective of the automotive climate control system. Applying the results of research studies to the practical problems require quantitative information of the thermal environment in the passenger compartment of a vehicle. The exposure to solar radiation is known to alter the thermal environment in the passenger compartment. A photovoltaic-cell based sensor is commonly used in the automotive climate control system to measure the solar radiation exposure of the passenger compartment of a vehicle. The erroneous information from a sensor however can cause thermal discomfort to the occupants. The erroneous measurement can be due to physical or environmental parameters. Shading of a solar sensor due to the opaque vehicle body elements is one such environmental parameter that is known to give incorrect measurement.
Technical Paper

Reversible Sulfur Poisoning of 3-way Catalyst linked with Oxygen Storage Mechanisms

2021-09-05
2021-24-0069
Even though the 3-way catalyst chemistry has been studied extensively in the literature, some performance aspects of practical relevance have not been fully explained. It is believed that the Oxygen Storage Capacity function of 3-way catalytic components dominates the behavior during stoichiometry transitions from lean to rich mode and vice versa whereas a number of mathematical models have been proposed to describe the dynamics of pollutant conversion. Previous studies have suggested a strong impact of Sulfur on the pollutant conversion after a lean to rich transition, which has not been adequately explained and modelled. Lean to rich transitions are highly relevant to catalyst ‘purging’ needed after exposure to high O2 levels (e.g. after fuel cut-offs). This work presents engine test measurements with an engine-aged catalyst that highlight the negative impact of Sulfur on pollutant conversion after a lean to rich transition.
Technical Paper

A Physical Model for Driveshaft Vibration Transmissibility

2021-08-31
2021-01-1112
The driveshafts can be an important contributor to vehicle interior noise including low-frequency (booming) noise where the vibrations, originating in the powerplant, travel to the vehicle body through the driveshafts. A suitable Key Performance Indicator (KPI) for the driveshaft performance is the transmissibility, which is an output/input acceleration ratio and can be used to describe the amount of vibration transferred from the inboard to the outboard joint of the driveshaft. This paper introduces a simple physical model of the driveshaft transmissibility able to support the development and evaluation of the driveshaft and to estimate the effectiveness of countermeasures such as a dynamic damper. The model is validated through comparison with on-vehicle measurements. The proposed approach offers ease of use, low computational cost and clear relation of the measured transmissibility with the system’s physical properties.
Journal Article

Evaluation of Fuel Economy Potential of an Active Grille Shutter by the Means of Model Based Development Including Vehicle Heat Management

2015-09-06
2015-24-2536
In the automotive field, reducing harmful pollutant, CO2 emissions and fuel consumption of vehicles while increasing customer comfort is a continuous challenge that requires more and more sophisticated technology implementations. However, it is often difficult to anticipate the advantages and drawbacks of a technology without having its prototype parts and/or knowing the optimal control strategy. In order to meet these challenges, the authors have developed a vehicle thermal model in AMESim platform to evaluate the benefits of an Active Grille Shutter (AGS) on fuel economy when applied. The vehicle model was based on a C-Segment vehicle powered by a 1.4L Diesel engine. The complete oil and coolant circuits were modeled as well as a friction model based on engine coolant and oil temperature.
Journal Article

Power Dense and Robust Traction Power Inverter for the Second-Generation Chevrolet Volt Extended-Range EV

2015-04-14
2015-01-1201
The Chevrolet Volt is an electric vehicle with extended-range that is capable of operation on battery power alone, and on engine power after depletion of the battery charge. First generation Chevrolet Volts were driven over half a billion miles in North America from October 2013 through September 2014, 74% of which were all-electric [1, 12]. For 2016, GM has developed the second-generation of the Volt vehicle and “Voltec” propulsion system. By significantly re-engineering the traction power inverter module (TPIM) for the second-generation Chevrolet Volt extended-range electric vehicle (EREV), we were able to meet all performance targets while maintaining extremely high reliability and environmental robustness. The power switch was re-designed to achieve efficiency targets and meet thermal challenges. A novel cooling approach enables high power density while maintaining a very high overall conversion efficiency.
Journal Article

Evaluation of Cu-Based SCR/DPF Technology for Diesel Exhaust Emission Control

2008-04-14
2008-01-0072
Recently, a new technology, termed 2-way SCR/DPF by the authors, has been developed by several catalyst suppliers for diesel exhaust emission control. Unlike a conventional emission control system consisting of an SCR catalyst followed by a catalyzed DPF, a wall-flow filter is coated with SCR catalysts for controlling both NOx and PM emissions in a single catalytic converter, thus reducing the overall system volume and cost. In this work, the potential and limitations of the Cu/Zeolite-based SCR/DPF technology for meeting future emission standards were evaluated on a pick-up truck equipped with a prototype light-duty diesel engine.
Journal Article

Chevrolet Sequel: Reinventing the Automobile

2008-04-14
2008-01-0421
Sequel is the third vehicle in GM's Reinvention of the Automobile and is the first zero emissions passenger vehicle to drive more than 300 miles on public roads without refueling or recharging. It is purpose-built around the hydrogen storage and fuel cell systems and uses the skateboard principle introduced in the Autonomy vision concept and the Hy-wire proof-of-concept vehicles. Sequel's aluminum structure, Flexray controlled chassis-by-wire systems and AWD system comprising a single front electric motor and two rear wheel motors make it, perhaps, the most technically advanced automobile ever built. The paper describes the vehicle's design and performance characteristics.
Journal Article

Terrain Profile Estimation for use in Suspension Simulation Testing

2008-04-14
2008-01-1414
Efforts by vehicle manufacturers to reduce road testing have resulted in an increased reliance on the simulation methods for loads measurement and validation, including increased emphasis on methods to characterize and digitally represent test road inputs. Accurate terrain models are especially important in the case of large dynamic road inputs, and for evaluation of vehicle suspension loads and durability. In contrast to direct terrain topology measurement, methods to estimate test road input using only vehicle suspension measurements and a tire dynamic model will be presented. Applications of terrain models for generic simulation and testing will also be discussed.
Journal Article

Late Intake Valve Closing as an Emissions Control Strategy at Tier 2 Bin 5 Engine-Out NOx Level

2008-04-14
2008-01-0637
A fully flexible valve actuation (FFVA) system was developed for a single cylinder research engine to investigate high efficiency clean combustion (HECC) in a diesel engine. The main objectives of the study were to examine the emissions, performance, and combustion characteristics of the engine using late intake valve closing (LIVC) to determine the benefits and limitations of this strategy to meet Tier 2 Bin 5 NOx requirements without after-treatment. The most significant benefit of LIVC is a reduction in particulates due to the longer ignition delay time and a subsequent reduction in local fuel rich combustion zones. More than a 95% reduction in particulates was observed at some operating conditions. Combustion noise was also reduced at low and medium loads due to slower heat release. Although it is difficult to assess the fuel economy benefits of LIVC using a single cylinder engine, LIVC shows the potential to improve the fuel economy through several approaches.
Journal Article

A Scientific Approach for Designing Conservative Tests in Vehicle Development

2008-04-14
2008-01-0848
This paper suggests a scientific approach to designing conservative tests based on computer simulation of the influence of the sources of variations. The idea is to design the conservative test so that, even in the presence of variation, there is a high probability that a random test will have a better result than the conservative test. Therefore, if the conservative test meets the requirement, one has a scientific reason to believe that any random test would have a high probability of meeting it. This new approach is illustrated for FMVSS301 80 kph 70% rear offset deformable barrier impact.
Journal Article

Reducing Power Demand for Heavy Suspension Tests

2008-04-14
2008-01-0690
Competitive pressures, globalization of markets, and integration of new materials and technologies into heavy vehicle suspension systems have increased demand for durability validation of new designs. Traditional Proving Ground and on-road testing for suspension development have the limitations of extremely long test times, poor repeatability and the corresponding difficultly in getting good engineering level data on failures. This test approach requires a complete vehicle driven continuously over severe Proving Ground events for extended periods. Such tests are not only time consuming but also costly in terms of equipment, maintenance, personnel, and fuel. Ideally multiple samples must be tested to accumulate equivalent millions of kilometers of operation in highly damaging environments.
Journal Article

Pneumatic Brake Apply System Response and Aero-Acoustic Performance Considerations

2008-04-14
2008-01-0821
Over the past decade, the automotive industry has seen a rapid decrease in product development cycle time and an ever increasing need by original equipment manufacturers and their suppliers to differentiate themselves in the marketplace. This differentiation is increasingly accomplished by introducing new technology while continually improving the performance of existing automotive systems. In the area of automotive brake system design, and, in particular, the brake apply subsystem, an increased focus has been placed on the development of electrohydraulic apply systems and brake-by-wire systems to replace traditional pneumatic and hydraulic systems. Nevertheless, the traditional brake apply systems, especially vacuum-based or pneumatic systems, will continue to represent the majority of brake apply system production volume into the foreseeable future, which underscores the need to improve the performance and application of these traditional systems in passenger cars and light-trucks.
Journal Article

Gasoline Fuel Injector Spray Measurement and Characterization - A New SAE J2715 Recommended Practice

2008-04-14
2008-01-1068
With increasingly stringent emissions regulations and concurrent requirements for enhanced engine thermal efficiency, a comprehensive characterization of the automotive gasoline fuel spray has become essential. The acquisition of accurate and repeatable spray data is even more critical when a combustion strategy such as gasoline direct injection is to be utilized. Without industry-wide standardization of testing procedures, large variablilities have been experienced in attempts to verify the claimed spray performance values for the Sauter mean diameter, Dv90, tip penetration and cone angle of many types of fuel sprays. A new SAE Recommended Practice document, J2715, has been developed by the SAE Gasoline Fuel Injection Standards Committee (GFISC) and is now available for the measurement and characterization of the fuel sprays from both gasoline direct injection and port fuel injection injectors.
Journal Article

The Electrification of the Automobile: From Conventional Hybrid, to Plug-in Hybrids, to Extended-Range Electric Vehicles

2008-04-14
2008-01-0458
A key element of General Motors' Advanced Propulsion Technology Strategy is the electrification of the automobile. The objectives of this strategy are reduced fuel consumption, reduced emissions and increased energy security/diversification. The introduction of hybrid vehicles was one of the first steps as a result of this strategy. To determine future opportunities and direction, an extensive study was completed to better understand the ability of Plug-in Hybrid Electric Vehicles (PHEV) and Extended-Range Electric Vehicles (E-REV) to address societal challenges. The study evaluated real world representative driving datasets to understand actual vehicle usage. Vehicle simulations were conducted to evaluate the merits of PHEV and E-REV configurations. As derivatives of conventional full hybrids, PHEVs have the potential to deliver a significant reduction in petroleum usage.
Journal Article

Safety Analysis of Software-intensive Motion Control Systems

2009-04-20
2009-01-0756
The auto industry has had decades of experience with designing safe vehicles. The introduction of highly integrated features brings new challenges that require innovative adaptations of existing safety methodologies and perhaps even some completely new concepts. In this paper, we describe some of the new challenges that will be faced by all OEMs and suppliers. We also describe a set of generic top-level potential hazards that can be used as a starting point for the Preliminary Hazard Analysis (PHA) of a vehicle software-intensive motion control system. Based on our experience with the safety analysis of a system of this kind, we describe some general categories of hazard causes that are considered for software-intensive systems and can be used systematically in developing the PHA.
Journal Article

Calibration and Validation of a Diesel Oxidation Catalyst Model: from Synthetic Gas Testing to Driving Cycle Applications

2011-04-12
2011-01-1244
To meet future stringent emission regulations such as Euro6, the design and control of diesel exhaust after-treatment systems will become more complex in order to ensure their optimum operation over time. Moreover, because of the strong pressure for CO₂ emissions reduction, the average exhaust temperature is expected to decrease, posing significant challenges on exhaust after-treatment. Diesel Oxidation Catalysts (DOCs) are already widely used to reduce CO and hydrocarbons (HC) from diesel engine emissions. In addition, DOC is also used to control the NO₂/NOx ratio and to generate the exothermic reactions necessary for the thermal regeneration of Diesel Particulate Filter (DPF) and NOx Storage and Reduction catalysts (NSR). The expected temperature decrease of diesel exhaust will adversely affect the CO and unburned hydrocarbons (UHC) conversion efficiency of the catalysts. Therefore, the development cost for the design and control of new DOCs is increasing.
Journal Article

GREEN-MAC-LCCP®: A Tool for Assessing Life Cycle Greenhouse Emissions of Alternative Refrigerants

2008-04-14
2008-01-0828
The GREEN-MAC-LCCP© [Global Refrigerants Energy & Environmental - Mobile Air Condition - Life Cycle Climate Performance] model described here is an evolution of a previous GM model that assesses the lifecycle energy and GHG emissions associated with the production, use and disposal of alternative refrigerants and MAC components. This new model reduces the complexity of inputs and provides a consistent output analysis. This model includes Microsoft Excel Visual Basic© code to automatically make the calculations once inputs are complete.
Journal Article

Hot Surface Ignition of Gasoline-Ethanol Fuel Mixtures

2009-04-20
2009-01-0016
The purpose of this paper is to present the results of hot surface ignition (HSI) testing and American Society for Testing and Materials (ASTM) auto-ignition testing (AIT) performed on gasoline fuel mixtures containing varying levels of ethanol. With the increased consumer interest in ethanol-based fuels as a measure of reducing the United States dependence on foreign oil, the use of E85 and other ethanol/petroleum fuel blends is on the increase. While some autoignition data for summer and winter blends of gasoline on hot surfaces exist beyond the standard ASTM E659-78 test procedure [1], there is little data on ethanol-based fuels and their HSI characteristics.
Journal Article

Design and Development of a Switching Roller Finger Follower for Discrete Variable Valve Lift in Gasoline Engine Applications

2012-09-10
2012-01-1639
Global environmental and economic concerns regarding increasing fuel consumption and greenhouse gas emission are driving changes to legislative regulations and consumer demand. As regulations become more stringent, advanced engine technologies must be developed and implemented to realize desired benefits. Discrete variable valve lift technology is a targeted means to achieve improved fuel economy in gasoline engines. By limiting intake air flow with an engine valve, as opposed to standard throttling, road-load pumping losses are reduced resulting in improved fuel economy. This paper focuses on the design and development of a switching roller finger follower system which enables two mode discrete variable valve lift on end pivot roller finger follower valvetrains. The system configuration presented includes a four-cylinder passenger car engine with an electro-hydraulic oil control valve, dual feed hydraulic lash adjuster, and switching roller finger follower.
X