Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Conversion of a Small Size Passenger Car to Hydrogen Fueling: Focus on Rated Power and Injection Phasing Effects

2022-09-16
2022-24-0031
In the context of increasing efforts towards zero emissions transport, hydrogen represents a valid alternative to electric powertrains. Spark ignition (SI) engines are well suited for this alternative fuel and its specific application requires relatively minor changes with respect to added components. Limited range is one of the main issues with hydrogen as an energy source for transportation, due to its low energy density. The present study looked at the possibility of converting a small size passenger car powered by a turbocharged SI unit to hydrogen fueling. Taking the electric version of the vehicle as benchmark, the initial evaluation of the hydrogen SI alternative appears feasible with an additional gas container comparable in size to the gasoline tank. As a result, further investigation was aimed at actual engine operation in port fuel injection mode, with a focus on rated power and injection phasing effects.
Technical Paper

Conversion of a Small Size Passenger Car to Hydrogen Fueling: Focus on Vehicle Dynamics and ECU Remapping Requirements

2023-08-28
2023-24-0065
Converting spark ignition (SI) engines to H2 fueling is an attractive route for achieving zero carbon transportation and solving the legacy fleet problem in a future scenario in which electric powertrains will dominate. The current paper looks at a small size passenger car in terms of vehicle dynamics and electronic control unit (ECU) remapping requirements, in the hypothesis of using H2 as a gasoline replacement. One major issue with the use of H2 in port fuel injection (PFI) engines is that it causes reduced volumetric efficiency and thus low power. The vehicle considered for the study features turbocharging and therefore complete or partial recuperation of lost power is possible. Other specific requirements such as injection phasing were also under scrutiny, especially as PFI was hypothesized to maximize cost effectiveness. A 0D/1D model was used for simulating engine running characteristics as well as vehicle dynamics.
Technical Paper

Conversion of a Small Size Passenger Car to Hydrogen Fueling: 0D/1D Simulation of Port- vs Direct-Injection and Boosting Requirements

2023-08-28
2023-24-0074
Hydrogen is an energy vector with low environmental impact and will play a significant role in the future of transportation. Converting a spark ignition (SI) engine powered vehicle to H2 fueling has several challenges, but was overall found to be feasible with contained cost. Fuel delivery directly to the cylinder features numerous advantages and can successfully mitigate backfire, a major issue for H2 SI engines. Within this context, the present work investigated the specific fuel system requirements in port- (PFI) and direct-injection (DI) configurations. A 0D/1D model was used to simulate engine operating characteristics in several working conditions. As expected, the model predicted significant improvement of volumetric efficiency for DI compared to the PFI configuration. Boosting requirements were predicted to be at levels quite close to those for gasoline fueling.
X