Refine Your Search

Search Results

Viewing 1 to 12 of 12
Technical Paper

Upper Neck Response of the Belt and Air Bag Restrained 50th Percentile Hybrid III Dummy in the USA's New Car Assessment Program

1998-11-02
983164
Since 1994, the New Car Assessment Program (NCAP) of the National Highway Traffic Safety Administration (NHTSA) has compiled upper neck loads for the belt and air bag restrained 50th percentile male Hybrid III dummy. Over five years from 1994 to 1998, in frontal crash tests, NCAP collected upper neck data for 118 passenger cars and seventy-eight light trucks and vans. This paper examines these data and attempts to assess the potential for neck injury based on injury criteria included in FMVSS No. 208 (for the optional sled test). The paper examines the extent of serious neck injury in real world crashes as reported in the National Automotive Sampling System (NASS). The results suggest that serious neck injuries do occur at higher speeds for crashes involving occupants restrained by belts in passenger cars.
Technical Paper

Pedestrian head impact testing and PCDS reconstructions

2001-06-04
2001-06-0184
Pedestrian research and testing at the NHTSA Vehicle Research and Test Center has recently focused on assessment of proposed ISO and EEVC head impact test procedures, and extension of these procedures to additional vehicle frontal surfaces. In addition to test parameter sensitivity evaluation, reconstruction of PCDS (Pedestrian Crash Data Study) cases with laboratory impact tests and computer simulations has been conducted. This paper presents the results of this research.
Technical Paper

Computational Analysis of Head Impact Response Under Car Crash Loadings

1995-11-01
952718
Computational simulations are conducted for several head impact scenarios using a three dimensional finite element model of the human brain in conjunction with accelerometer data taken from crash test data. Accelerometer data from a 3-2-2-2 nine accelerometer array, located in the test dummy headpart, is processed to extract both rotational and translational velocity components at the headpart center of gravity with respect to inertial coordinates. The resulting generalized six degree-of-freedom description of headpart kinematics includes effects of all head impacts with the interior structure, and is used to characterize the momentum field and inertial loads which would be experienced by soft brain tissue under impact conditions. These kinematic descriptions are then applied to a finite element model of the brain to replicate dynamic loading for actual crash test conditions, and responses pertinent to brain injury are analyzed.
Technical Paper

Light Vehicle Occupant Protection - Top and Rear Structures and Interiors

1982-02-01
820244
This paper addresses serious, occupant crash injuries from: (a) head impacts with A-pillars, roof headers, and roof side rails, and (b) occupant entrapment and roof intrusion in rollover accidents. It also discusses two less frequent causes of injury: (a) fires in crashes, and (b) occupant ejection through the roof and rear window or rear doors. The paper estimates the relative frequencies of these types of injuries, classified according to the body area injured and the vehicle interior component responsible for the injury. Data for these estimates is from the National Crash Severity Study augmented by the 1979 Fatal Accident Reporting System data. Also, this paper addresses the potential for reducing the severity of these injuries in light motor vehicles, with particular emphasis on AIS 3 and more serious injuries.
Technical Paper

Pedestrian Injuries and the Downsizing of Cars

1983-02-01
830050
The Pedestrian Injury Causation Study (PICS) is used to investigate the relations between car weight and pedestrian injuries in frontal accidents. As car curb weight decreased, large changes in overall severity are not observed, although the proportion of head injuries increases. Since contacts of the windshield area are more common in smaller cars, they are studied in detail.
Technical Paper

A Simple, Practical Method of Assessing Foam Padding Materials for Head Impact Protection

1986-02-24
860199
Since 1960 head impact responses under the action of various forces have been studied analytically. However, the effects of force distribution upon head injury mechanisms have not been studied because measurements of force distribution during head impacts have not been experimentally available. In the past, several methods were tested in order to measure head contact pressure, but the results were not very useful. Since the skull is a composite shell structure, the thin shell theory may be valid for stress analysis. According to the theory, the influence of an external load on a shell element damps out rapidly as the distance between the load and the element increases. Stress concentrations occur in the shell elements directly under the center core area of a localized external load. Therefore, the force on the center core, not the entire force distribution, is critical for the assessment of skull responses.
Technical Paper

Two New Areas Concerning Side impact Protection for Passenger Car Occupants

1987-05-01
871114
In vehicle crash accidents, approximately 27% to 30% of passenger car occupant casualties are attributed to side impact accidents. The annual death toll in side impacts for passenger car occupants reached 9,000 in 1975 and 1976 and has been between 7,000 and 8,000 in the 1980's. Since 1977, the National Highway Traffic Safety Administration (NHTSA) and many other groups have conducted a significant amount of research on occupant side impact protection with emphasis on thorax injury reduction. Three important problem areas in the side impact are (1) thorax-to-side interior impact, (2) head impacts with A-pillar/roof rail components and (3) occupant ejection through side doors/windows. While the first problem area has been thoroughly studied, the remaining two areas are seldom discussed and less well understood. Therefore, they are relatively new areas to many people.
Technical Paper

Evaluation of Child Safety Seats Based on Sled Tests

1987-11-01
872210
The injury reducing effectiveness of child safety seats in frontal crashes was evaluated, based on 36 frontal or oblique sled tests run with two or more GM three-year-old dummies in the simulated passenger compartment of a car. Unrestrained, correctly restrained and incorrectly restrained dummies were tested at the range of speeds where most nonminor injuries occur (15-35 mph). Accident data from NHTSA files were used to calibrate a relationship between the front-seat unrestrained dummies' HIC and unrestrained children's risk of serious head injuries; also between torso g's and the risk of serious torso injuries. These relationships were used to predict injury risk for the restrained children as a function of crash speed and to compare it to the risk for unrestrained children. The sled test analysis predicted that the 1984 mix of correctly and incorrectly used safety seats reduced serious injury risk by 40 percent relative to the unrestrained child, in frontal crashes.
Technical Paper

The Role of Skull Fractures in Short Duration Head Impacts

1987-02-23
870321
Head injuries are considered a significant safety problem for vehicle occupants involved in vehicle crashes. Although medical literature on the subject is extensive, the emphasis is mainly on the clinical and studies frequently involve data samples that are not representative to the vehicle occupant population. Also, research efforts on head injury have focused on the head rotational acceleration mechanism. The effect of head contact on brain injuries has not been adequately acknowledged and there has been disagreement regarding skull fracture and its relationship to brain injury. The human head, being an extremely complex structure, has many independent injury modes which cannot be described satisfactorily by a single brain injury mechanism. Many individual pathophysiological disturbances to the skull and its contents together comprise head injuries.
Technical Paper

Fatality and injury Reducing Effectiveness of Lap Belts for Back Seat Occupants

1987-02-23
870486
The fatality and injury reducing effectiveness of Tap belts for back seat occupants is estimated by applying the double pair comparison method to 1975-86 Fatal Accident Reporting System and 1982-85 Pennsylvania accident data. Lap belts significantly reduce the risk of fatalities by 17-26 percent, serious injuries by 37 percent, moderate to serious injuries by 33 percent and injuries of any severity by 11 percent, relative to the unrestrained back seat occupant. Lap belts are primarily effective in nonfrontal crashes because the unrestrained back seat occupant is already well protected in frontals. Lap belted occupants have lower head injury risk but higher torso injury risk than unrestrained back seat occupants. This paper presents the views of the author and not necessarily those of the National Highway Traffic Safety Administration (NHTSA).
Technical Paper

Determination of the Significance of Roof Crush on Head and Neck Injury to Passenger Vehicle Occupants in Rollover Crashes

1995-02-01
950655
A comparative study between belted rollover occupants who did and did not receive head injuries from roof contact was conducted using the National Accident Sampling System (NASS) database. The main objective was to determine if headroom reduction increases the risk of head injury. Headroom was determined for 155 belted occupants involved in rollover crashes of vehicles which were then weighted to make them representative of national estimates. Results showed that headroom was reduced more in those crashes where the occupant had head injuries than in cases where there were no head injuries. It was concluded that the risk of head injury increased with reduced headroom. Furthermore, it was observed that when the initial headroom was higher, the incidence of head injury was reduced.
Technical Paper

Development of Brain Injury Criteria (BrIC)

2013-11-11
2013-22-0010
Rotational motion of the head as a mechanism for brain injury was proposed back in the 1940s. Since then a multitude of research studies by various institutions were conducted to confirm/reject this hypothesis. Most of the studies were conducted on animals and concluded that rotational kinematics experienced by the animal's head may cause axonal deformations large enough to induce their functional deficit. Other studies utilized physical and mathematical models of human and animal heads to derive brain injury criteria based on deformation/pressure histories computed from their models.
X