Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Simulation of Softening and Rupture in Multilayered Fuel Tank Material

2019-11-21
2019-28-2557
Multi-layered, high-density polyethylene (HDPE) fuel tanks are increasingly being used in automobiles due to advantages such as shape flexibility, low weight and corrosion resistance. Though, HDPE fuel tanks are perceived to be safer as compared to metallic tanks, the material properties are influenced by service temperature. At higher temperatures (more than 80oC), plastic fuel tanks can soften, sag and eventually spill out the fuel, while the extreme cold (less than -20°C) can lead to potential cracking problems. Damage may also occur due to accidental drop while handling or due to an impact from a flying shrapnel. This can be catastrophic due to flammability of the fuel. The objective of this work is to characterize and develop a failure model for the plastic fuel tank material to simulate damage and enhance predictive capability of CAE for chassis and safety load cases.
Journal Article

Stable and Accurate LS-DYNA Simulations with Foam Material Models: Optimization of Finite Element Model Parameters

2017-03-28
2017-01-1338
Cellular foams have found a predominant application in automotive industry for efficient energy absorption so as to meet stringent and continuously improving vehicle crashworthiness and occupant protection criteria. The recent inclusion of pedestrian protection regulations mandate the use of foams of different densities for impact energy absorption at identified impact locations; this has paved the way for significant advancements in foam molding techniques such as dual density and tri-density molding. With increased emphasis on light-weighting, solutions involving the use of polymeric or metallic foams as fillers in hollow structures - foam encapsulated metal structures - are being explored. Another major automotive application of foams is in the seat comfort area, which again involves foams of intricate shapes and sizes. In addition, a few recently developed foams are anisotropic, adding on to the existing complexities.
Technical Paper

Validation of Expanded Polypropylene (EPP) Foam Material Models for Low Speed Bumper and Pedestrian Protection Applications

2017-03-28
2017-01-0363
Expanded Polypropylene (EPP) foams are most commonly used in automotive applications for pedestrian protection and to meet low speed bumper regulatory requirements. In today’s automotive world the design of vehicles is predominantly driven by Computer Aided Engineering (CAE). This makes it necessary to have a validated material model for EPP foams in order to simulate and predict performance under various loading conditions. Since most of the automotive OEMs depend on local material suppliers for their global vehicle applications it is necessary to understand the variation in mechanical properties of the EPP foams and its effect on performance predictions. In this paper, EPP foams from three suppliers across global regions are characterized to study the inter-supplier variation in mechanical properties.
X