Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Video

Cooling Airflow System Modeling in CFD Using Assumption of Stationary Flow

2011-11-29
Battery Electric Vehicles and Extended Range Electric Vehicles, like the Chevrolet Volt, can use electrical energy from the Grid to meet the majority of a driver�s transportation needs. This has the positive societal effects of displace petroleum consumption and associated pollutants from combustion on a well to wheels basis, as well as reduced energy costs for the driver. CO2 may also be lower, but this depends upon the nature of the grid energy generation. There is a mix of sources � coal-fired, gas -fired, nuclear or renewables, like hydro, solar, wind or biomass for grid electrical energy. This mix changes by region, and also on the weather and time of day. By monitoring the grid mix and communicating it to drivers (or to their vehicles) in real-time, electrically driven vehicles may be recharged to take advantage of the lowest CO2, and potentially lower cost charging opportunities.
Technical Paper

A Simple Model of Unsteady Turbulent Flame Propagation

1997-10-01
972993
A model of premixed turbulent combustion is modified for multi-dimensional computations of SI engines. This approach is based on the use of turbulent flame speed in order to suggest a closed balance equation for the mean combustion progress variable. The model includes a single unknown input parameter to be tuned. This model is tested against two sets of experimental data obtained by Bradley et al [17, 18 and 19] and Karpov and Severin [15] in fan-stirred bombs. The model quantitatively predicts the development of the turbulent flame speed, the effects of the initial pressure, temperature, and mixture composition on the turbulent flame speed, and the effects of r.m.s. turbulent velocity and burning mixture composition on the rate of the pressure rise. These results were computed with the same value of the aforementioned unknown input parameter of the model.
Technical Paper

Randomness of Flame Kernel Development in Turbulent Gas Mixture

1998-10-19
982617
An expanding cylindrical laminar flame kernel affected by random external strain rates and diffusivity is numerically simulated in order to gain insight into the influence of small-scale turbulence on the combustion variability in engines. In the simulations, the kernel is strained, as a whole, by external velocity gradients randomly generated with either Gaussian or log-normal probability density functions. The influence of small-scale turbulent heat and mass transfer is modeled by turbulent diffusivity, the randomness of which is controlled by the fluctuations in the viscous dissipation averaged over the kernel volume. The computed results show that small-scale phenomena can substantially affect the quenching characteristics of a small flame kernel and the kernel growth history rj(t); the scatter of the computed curves of rf(t) being mainly controlled by the scatter of the duration of the initial stage of kernel development.
Technical Paper

Effect of Injection Parameters on Auto-Ignition and Soot Formation in Diesel Sprays

2001-09-24
2001-01-3687
A validation study of the numerical model of n-heptane spray combustion based on experimental constant-volume data [1] was done, by comparing auto-ignition delays for different pre - turbulence levels and initial temperatures, flame contours, and soot distributions under Diesel-like conditions. The basic novelty of the methodology developed in [2] - [3] is the implementation of the partially stirred reactor (PaSR) model accounting for detailed chemistry / turbulence interactions. It is based on the assumption that the chemical processes proceed in two successive steps: micro mixing, simulated on a sub - grid scale, is followed by the reaction act. When the all Re number RNG k-ε or LES models are employed, the micro mixing time can be consistently defined giving the combustion model a “well-closed” form incorporated into the KIVA-3V code.
Technical Paper

Speed Limit in City Area and Improvement of Vehicle Front Design for Pedestrian Impact Protection-A Computer Simulation Study

2001-06-04
2001-06-0227
This paper presented a part of results from an ongoing project for pedestrian protection, which is carried out at Chalmers University of Technology in Sweden. A validated pedestrian mathematical model was used in this study to simulate vehicle-pedestrian impacts. A large number of simulations have been carried out with various parameters. The injury-related parameters concerning head, chest, pelvis and lower extremities were calculated to evaluate the effect of impact speed and vehicle front structure on the risk of pedestrian injuries. The effect of following vehicle parameters was studied: stiffness of bumper, hood edge, hood top, windscreen frame, and shape of vehicle front structures. A parameter study was conducted by modelling vehicle-pedestrian impacts with various sizes of cars, mini vans, and light trucks. This choice represents the trends of new vehicle fleet and their frequency of involvement in real world accidents.
Technical Paper

Simulations of Fuel/Air Mixing, Combustion, and Pollutant Formation in a Direct Injection Gasoline Engine

2002-03-04
2002-01-0835
Simulations of a Direct Injection Spark Ignition (DISI) engine have been performed for both early injection with homogeneous charge combustion and for late injection with stratified charge combustion. The purpose has been to study flow characteristics, fuel/air mixing, combustion, and NOx and soot formation. Focus is put on the combustion modeling. Two different full load cases with early injection are simulated, 2000 rpm and 6000 rpm. One load point with late injection is simulated, 2000 rpm and 2.8 bar net MEP. Three different injection timings are simulated at the low load point: 77, 82, and 87 CAD bTDC. The spray simulations are tuned to match measured spray penetrations and droplet size distributions at both atmospheric and elevated pressure. Boundary conditions for the engine simulations are taken from 1-D gas exchange simulations that are tuned to match engine tests.
Technical Paper

Pressure Drop of Monolithic Catalytic Converters Experiments and Modeling

2002-03-04
2002-01-1010
The pressure drop behavior of catalytic converters has been investigated for a number of different substrates, suitable for high performance IC-engines, regarding cell density, wall thickness and coating. The measurements have been performed on an experimental rig with room-air flow and hot-air flow. The data has been used to develop an empirical model for pressure drop in catalytic converters. The sources of pressure drop, such as viscous and inertial effects, have been separated in the model. The influence of turbulence on the pressure drop has been experimentally investigated. The model agrees well with experimental data and previous literature models and can be applied for 1D predictions as well as 3D CFD calculations.
Technical Paper

Numerical Investigation of Natural Convection in a Simplified Engine Bay

2016-04-05
2016-01-1683
Presented are results from numerical investigations of buoyancy driven flow in a simplified representation of an engine bay. A main motivation for this study is the necessity for a valid correlation of results from numerical methods and procedures with physical measurements in order to evaluate the accuracy and feasibility of the available numerical tools for prediction of natural convection. This analysis is based on previously performed PIV and temperature measurements in a controlled physical setup, which reproduced thermal soak conditions in the engine compartment as they occur for a vehicle parked in a quiescent ambient after sustaining high thermal loads. Thermal soak is an important phenomenon in the engine bay primarily driven by natural convection and radiation after there had been a high power demand on the engine. With the cooling fan turned off and in quiescent environment, buoyancy driven convection and radiation are the dominating modes of heat transfer.
Technical Paper

Investigation of Interior Noise from Generic Side- View Mirror Using Incompressible and Compressible Solvers of DES and LES

2018-04-03
2018-01-0735
Exterior turbulent flow is an important source of automobile cabin interior noise. The turbulent flow impacts the windows of the cabins to excite the structural vibration that emits the interior noise. Meanwhile, the exterior noise generated from the turbulent flow can also cause the window vibration and generate the interior noise. Side-view mirrors mounted upstream of the windows are one of the predominant body parts inducing the turbulent flow. In this paper, we investigate the interior noise caused by a generic side-view mirror. The interior noise propagates in a cuboid cavity with a rectangular glass window. The exterior flow and the exterior noise are computed using advanced CFD methods: compressible large eddy simulation, compressible detached eddy simulation (DES), incompressible DES, and incompressible DES coupled with an acoustic wave model. The last method is used to simulate the hydrodynamic and acoustic pressure separately.
Technical Paper

Simplifications Applied to Simulation of Turbulence Induced by a Side View Mirror of a Full-Scale Truck Using DES

2018-04-03
2018-01-0708
In this paper, the turbulent flow induced by a production side-view mirror assembled on a full-scale production truck is simulated using a compressible k-ω SST detached eddy simulation (DES) approach -- the improved delayed DES (IDDES). The truck configuration consists of a compartment and a trailer. Due to the large size and geometric complexity of the configuration, some simplifications are applied to the simulation. A purpose of this work is to investigate whether the simplifications are suitable to obtain the reasonable properties of the flow near the side-view mirror. Another objective is to study the aerodynamic performances of the mirror. The configuration is simplified regarding two treatments. The first treatment is to retain the key exterior components of the truck body while removing the small gaps and structures. Furthermore, the trailer is shaped in an apex-truncated square pyramid.
Technical Paper

Oxidation of Hydrocarbons Released from Piston Crevices of S.I. Engines

1995-10-01
952539
This work presents a numerical method for predictions of HC oxidation in the cold turbulent wall jet emerging from the piston top land crevice in an S.I. engine, using a complex chemical reaction model. The method has been applied to an engine model geometry with the aim to predict the HC oxidation rate under engine - relevant conditions. According to the simulation a large amount of HC survives oxidation due to the long ignition delay of the wall jet emitted from the crevice. This ignition delay, in turn depends mainly on chemical composition and temperature of the gas mixture in the crevice and also on the temperature distribution in the cylinder boundary layer.
Technical Paper

Inertia Collection Applied to Vehicle Emissions

1989-09-01
892092
The INCOLL or INertia COLLection system described in this paper, should meet the requirements for a short transient test, without using any chassis dynamometer. To prove this point not only the background of its principles are described, but also results from its application both to S I engines with and without catalytic converters and to truck diesel engines. Special interest has been devoted to the oxygen sensor and converter efficiency and their response both during warm up and under transient conditions. The simplification of the analyzing equipment and the direct interpretation of the results, have been dealt with, as well as the repeativity of the results achieved. The INCOLL test may also have a potential use as quality test at the end of the production line and as a tool for reliability development as well as research and development within the field. The cost for an INCOLL test is estimated to be around one (1) percent of a normal FTP certification procedure.
Technical Paper

Two Dimensional Measurements of Soot Size and Concentration in Diesel Flames by Laser Based Optical Methods

2022-03-29
2022-01-0416
Soot particle size, particle concentration and volume fraction were measured by laser based methods in optically dense, highly turbulent combusting diesel sprays under engine-like conditions. Experiments were done in the Chalmers High Pressure, High Temperature spray rig under isobaric conditions and combusting commercial diesel fuel. Laser Induced Incandescence (LII), Elastic Scattering and Light Extinction were combined quasi-simultaneously to quantify particle characteristics spatially resolved in the middle plane of a combusting spray at two instants after the start of combustion. The influence that fuel injection pressure, gas temperature and gas pressure exert on particle size, particle concentration and volume fraction were studied. Probability density functions of particle size and two-dimensional images of particle diameter, particle concentration and volume fraction concerning instantaneous single-shot cases and average measurements are presented.
Technical Paper

A Catalytic NOX After-Treatment System for Heavy-Duty Trucks Using Diesel Fuel as Reducing Agent

1999-10-25
1999-01-3563
An advanced catalytic exhaust after-treatment system addresses the problem of NOX emissions from heavy-duty diesel trucks, relying on real-time catalyst modelling. The system consists of de-NOX catalysts, a device for injection of a reducing agent (diesel fuel) upstream the catalysts, and computer programmes to control the injection of the reducing agent and to model the engine and catalysts in real time. Experiments with 5 different air-assisted injectors were performed to determine the effect of injector design on the distribution of the injected diesel in the exhaust gas stream. A two-injector set-up was investigated to determine whether system efficiency could be increased without increasing the amount of catalyst or the amount of reducing agent necessary for the desired outcome. The results were verified by performing European standard transient cycle tests as well as stationary tests.
Technical Paper

Study of Software Integration for Transient Simulation of Future Cooling System for Heavy Truck Application

2014-04-01
2014-01-0653
The work investigates the integration between tools for analysis and simulation of cooling systems at Volvo Group Trucks Technology. At the same time it is a consequent step in evaluating GT-SUITE for the purposes of analysis and simulation of such systems. The focus is on 1D simulation tools, which are generally preferred in the context of transient simulations of engine and power train installation systems. The Cooling Analysis and Simulations group at Volvo Group Trucks Technology use a variety of 1D simulation tools for analysis of cooling performance. Volvo Power Train, on the other hand, use among others GT-SUITE for engine simulations. It is expected to improve the quality of the simulation, (i.e the accuracy of the results) and improve system integration by using one tool for both areas of simulation. This work delivers two transient models of FH 13L cooling system integrated with a predictive model of the engine and a detailed model of the main coolant circuit.
Technical Paper

Investigation of Spark Position Effects in a Small Pre-chamber on Ignition and Early Flame Propagation

2000-10-16
2000-01-2839
Lean gas engines have a potential for a significant reduction in both fuel consumption and emission levels. The use of a small pre-chamber with controlled stoichiometric or rich mixture composition is an effective way to deal with ignition problems in such engines. A constant volume vessel equipped with a device for generation of turbulence of known quantities is used to study the operation of a cylindrical pre-chamber of 1% of the main chamber volume. Pressure was measured in the main chamber and Schlieren images of the flame initiation and propagation in the main chamber were recorded for all set-ups. The investigation of the pre-chamber is focused on the position of the spark within the pre-chamber. Spark locations close to the orifice and close to the opposite wall as well as in the middle of the pre-chamber were tested and flame evolution and pressure history were studied.
Journal Article

Effects of Nozzle Geometry on the Characteristics of an Evaporating Diesel Spray

2016-10-17
2016-01-2197
The effects of nozzle geometry on diesel spray characteristics were studied in a spray chamber under evaporating conditions using three single-hole nozzles, one cylindrical and two convergent, designated N1 (outlet diameter 140 μm, k-factor 0), N2 (outlet diameter 140 μm, k-factor 2) and N3 (outlet diameter 136 μm, k-factor 2). Spray experiments were performed with each nozzle at two constant gas densities (15 and 30 kg/m3) and an ambient temperature (673 K) at which evaporation occurs, with injection pressures ranging from 800 to 1600 bar. A light absorption and scattering method using visible and UV light was implemented, and shadow images of liquid and vapor phase fuel were recorded with high-speed video cameras. The cylindrical nozzle N1 yielded larger local vapor cone angles than the convergent nozzles N2 and N3 at both gas densities, and the difference became larger as the injection pressure increased.
Journal Article

Multi-hole Injectors for DISI Engines: Nozzle Hole Configuration Influence on Spray Formation

2008-04-14
2008-01-0136
High-pressure multi-hole injectors are one candidate injector type for closed-spaced direct injection (DI) gasoline engines. In such a system, the spark plug must be located close to the spray and, during stratified operation, the spray is ignited very soon after the fuel droplets have been vaporized. Thus there are very high demands on the sprays used in such a system. An additional challenge is the positioning of the spark plug relative to the spray; both consistent ignitability and the absence of liquid fuel droplets must be achieved. Many injector parameters influence spray formation; for example, hole diameter, length to hole diameter ratio, nozzle hole configuration etc. This paper investigates the spray formation and spray induced air movement associated with rotational symmetrical and asymmetrical nozzle hole configurations.
X