Refine Your Search

Topic

Search Results

Technical Paper

A Strategy for Developing an Inclusive Load Case for Verification of Squeak and Rattle Noises in the Car Cabin

2021-08-31
2021-01-1088
Squeak and rattle (S&R) are nonstationary annoying and unwanted noises in the car cabin that result in considerable warranty costs for car manufacturers. Introduction of cars with remarkably lower background noises and the recent emphasis on electrification and autonomous driving further stress the need for producing squeak- and rattle-free cars. Automotive manufacturers use several road disturbances for physical evaluation and verification of S&R. The excitation signals collected from these road profiles are also employed in subsystem shaker rigs and virtual simulations that are gradually replacing physical complete vehicle test and verification. Considering the need for a shorter lead time and the introduction of optimisation loops, it is necessary to have efficient and inclusive excitation load cases for robust S&R evaluation.
Technical Paper

Quantitative High Speed Stability Assessment of a Sports Utility Vehicle and Classification of Wind Gust Profiles

2020-04-14
2020-01-0677
The automotive trends of vehicles with lower aerodynamic drag and more powerful drivetrains have caused increasing concern regarding stability issues at high speeds, since more streamlined bodies show greater sensitivity to crosswinds. This is especially pronounced for high vehicles, such as sports utility vehicles. Besides, the competitiveness in the automotive industry requires faster development times and, thus, a need to evaluate the high speed stability performance in an early design phase, preferable using simulation tools. The usefulness of these simulation tools partly relies on realistic boundary conditions for the wind and quantitative measures for assessing stability without the subjective evaluation of experienced drivers. This study employs an on-road experimental measurements setup to define relevant wind conditions and to find an objective methodology to evaluate high speed stability.
Technical Paper

Early Risk Identification and Cost-Benefit Analyses through Ergonomics Simulation

2009-06-09
2009-01-2287
For cost-beneficial reasons simulations with computer manikins have been increasingly used in the automotive industry for prediction of ergonomics problems before the product and work place exist in physical form. The main purpose of ergonomics simulations is to apply biomechanical models and data to assess the acceptability of the physical work load, e.g. working postures, visibility, clearance etc., which could result in requirements to change the design of the product. The aim is to improve ergonomics conditions in manual assembly and to promote a better product quality through improved assemblability (ease of assembly). Many studies have shown a clear correlation between assembly ergonomics and product quality and that poor assembly ergonomics result in impaired product quality and in decreased productivity. Nevertheless, there are remaining difficulties in achieving acceptance for changes of product and production solutions because of poor assembly ergonomics.
Technical Paper

Role of Late Soot Oxidation for Low Emission Combustion in a Diffusion-controlled, High-EGR, Heavy Duty Diesel Engine

2009-11-02
2009-01-2813
Soot formation and oxidation are complex and competing processes during diesel combustion. The balance between the two processes and their history determines engine-out soot values. Besides the efforts to lower soot formation with measures to influence the flame lift-off distance for example or to use HCCI-combustion, enhancement of late soot oxidation is of equal importance for low-λ diffusion-controlled low emissions combustion with EGR. The purpose of this study is to investigate soot oxidation in a heavy duty diesel engine by statistical analysis of engine data and in-cylinder endoscopic high speed photography together with CFD simulations with a main focus on large scale in-cylinder gas motion. Results from CFD simulations using a detailed soot model were used to reveal details about the soot oxidation.
Technical Paper

Automated Flexible Tooling for Wing Box Assembly: Hexapod Development Study

2016-09-27
2016-01-2110
The ability to adapt to rapidly evolving market demands continues to be the one of the key challenges in the automation of assembly processes in the aerospace industry. To meet this challenge, industry and academia have made efforts to automate flexible fixturing. LOCOMACHS (Low Cost Manufacturing and Assembly of Composite and Hybrid Structures) - a European Union funded project with 31 partners - aims to address various aspects of aero-structure assembly with a special attention directed to the development of a new build philosophy along with relevant enabling technologies. This paper aims to present the results on the developed wing box build philosophy and the integration of automated flexible tooling solutions into the assembly process. The developed solution constitutes the use of synchronized hexapods for the assembly of front spar to upper cover whereas another hexapod was developed to install a rib by using of a force feedback sensor.
Technical Paper

Battery Parameter Estimation from Recorded Fleet Data

2016-10-17
2016-01-2360
Existing battery parameter model structures are evaluated by estimating model parameters on real driving data applying standard system identification methods. Models are then evaluated on the test data in terms of goodness of fit and RMSE in voltage predictions. This is different from previous battery model evaluations where a common approach is to train parameters using standardized tests, e.g. hybrid pulse-power capability (HPPC), with predetermined charge and discharge sequences. Equivalent linear circuit models of different complexity were tested and evaluated in order to identify parameter dependencies at different state of charge levels and temperatures. Models are then used to create voltage output given a current, state of charge and temperature. The average accuracy of modelling the DC bus voltage provides a model goodness of fit average higher than 90% for a single RC circuit model.
Technical Paper

Surface Flow Visualization on a Full-Scale Passenger Car with Quantitative Tuft Image Processing

2016-04-05
2016-01-1582
Flow visualization techniques are widely used in aerodynamics to investigate the surface trace pattern. In this experimental investigation, the surface flow pattern over the rear end of a full-scale passenger car is studied using tufts. The movement of the tufts is recorded with a DSLR still camera, which continuously takes pictures. A novel and efficient tuft image processing algorithm has been developed to extract the tuft orientations in each image. This allows the extraction of the mean tuft angle and other such statistics. From the extracted tuft angles, streamline plots are created to identify points of interest, such as saddle points as well as separation and reattachment lines. Furthermore, the information about the tuft orientation in each time step allows studying steady and unsteady flow phenomena. Hence, the tuft image processing algorithm provides more detailed information about the surface flow than the traditional tuft method.
Technical Paper

LES Investigation of ECN Spray G2 with an Eulerian Stochastic Field Cavitation Model

2018-04-03
2018-01-0291
Due to an ongoing trend of high injection pressures in the realm of internal combustion engines, the role of cavitation that typically happens inside the injector nozzle has become increasingly important. In this work, a large Eddy Simulation (LES) with cavitation modeled on the basis of an Eulerian Stochastic Field (ESF) method and a homogeneous mixture model is performed to investigate the role of cavitation on the Engine Combustion Network (ECN) spray G2. The Eulerian stochastic field cavitation model is coupled to a pressure based solver for the flow, which lowers the computational cost, thereby making the methodology highly applicable to realistic injector geometries. Moreover, the nature of the Eulerian stochastic field method makes it more convenient to achieve a high scalability when applied to parallel cases, which gives the method the edge over cavitation models that are based on Lagrangian tracking.
Technical Paper

Digital Human Models' Appearance Impact on Observers' Ergonomic Assessment

2005-06-14
2005-01-2722
The objective of this paper is to investigate whether different appearance modes of the digital human models (DHM or manikins) affect the observers when judging a working posture. A case where the manikin is manually assembling a battery in the boot with help of a lifting device is used in the experiment. 16 different pictures were created and presented for the subjects. All pictures have the same background, but include a unique posture and manikin appearance combination. Four postures and four manikin appearances were used. The subjects were asked to rank the pictures after ergonomic assessment based on posture of the manikin. Subjects taking part in the study were either manufacturing engineering managers, simulation engineers or ergonomists. Results show that the different appearance modes affect the ergonomic judgment. A more realistic looking manikin is rated higher than the very same posture visualized with a less natural appearance.
Technical Paper

Numerical Simulation Accounting for the Finite-Rate Elementary Chemical Reactions for Computing Diesel Combustion Process

2005-09-11
2005-24-051
To facilitate research and development of diesel engines, the universal numerical code for predicting diesel combustion has been favored for the past decade. In this paper, the finite-rate elementary chemical reactions, sometimes called the detailed chemical reactions, are introduced into the KIVA-3V code through the use of the Partially Stirred Reactor (PaSR) model with the KH-RT break-up, modified collision and velocity interpolation models. Outcomes were such that the predicted pressure histories have favorable agreements with the measurements of single and double injection cases in the diesel engine for use in passenger cars. Thus, it is demonstrated that the present model will be a useful tool for predicting ignition and combustion characteristics encountered in the cylinder.
Technical Paper

Evaluation of Electrically Heated Catalyst Control Strategies against a Variation of Cold Engine Start Driver Behaviour

2022-03-29
2022-01-0544
An electrically heated catalyst (EHC) in the three-way catalyst (TWC) aftertreatment system of a gasoline internal combustion engine (ICE) provides cold engine start exhaust pollutant emission reduction potential. The EHC can be started before switching on the ICE, thereby offering the possibility to pre-heat (PRH) the TWC, in the absence of exhaust flow. The EHC can also provide post engine start heat (PSH) when the heat is accompanied by exhaust mass flow over the TWC. A mixed heating strategy (MXH) comprises both PRH and PSH. All three strategies are evaluated under a range of engine start variations using an ICE-exhaust aftertreatment (EATS) simulation framework. It is driven by an engine speed-torque requested trace, with an engine-out emissions model focused on cold-start, engine heating and catalyst heating engine measures and a physics- based EATS with EHC model.
Technical Paper

Inertia Collection Applied to Vehicle Emissions

1989-09-01
892092
The INCOLL or INertia COLLection system described in this paper, should meet the requirements for a short transient test, without using any chassis dynamometer. To prove this point not only the background of its principles are described, but also results from its application both to S I engines with and without catalytic converters and to truck diesel engines. Special interest has been devoted to the oxygen sensor and converter efficiency and their response both during warm up and under transient conditions. The simplification of the analyzing equipment and the direct interpretation of the results, have been dealt with, as well as the repeativity of the results achieved. The INCOLL test may also have a potential use as quality test at the end of the production line and as a tool for reliability development as well as research and development within the field. The cost for an INCOLL test is estimated to be around one (1) percent of a normal FTP certification procedure.
Technical Paper

Target Driven Bushing Design for Wheel Suspension Concept Development

2023-04-11
2023-01-0638
Bushing elasticity is one of the most important compliance factors that significantly influence driving behavior. The deformations of the bushings change the wheel orientations under external forces. Another important factor of bushing compliance is to provide a comfortable driving experience by isolating the vibrations from road irregularities. However, the driving comfort and driving dynamics are often in conflict and need to be balanced in terms of bushing compliance design. Specifically, lateral force steer and brake force steer are closely related to safety and stability and comprises must be minimized. The sensitivity analysis helps engineers to understand the critical bushing for certain compliance attributes, but optimal balancing is complicated to understand. The combination of individual bushing stiffness must be carefully set to achieve an acceptable level of all the attributes.
Technical Paper

Analysis of Brake Judder by use of Amplitude Functions

1999-05-17
1999-01-1779
Brake judder is a forced vibration occurring in different types of vehicles. The frequency of the vibration can be as high as 500 Hz, but usually remains below 100 Hz and often as low as 10-20 Hz. The driver experiences judder as vibrations in the steering wheel, brake pedal and floor. For high frequency brake judder, the structural vibrations are accompanied by a sound. In the present paper the vibration amplitude (in terms of angular deflection, velocity or acceleration) of the caliper has been used as a quantitative measure of the vibration level. Brake Torque Variation (BTV) is the primary excitation for the vibrations. The mechanical effects generating BTV are linked not only to manufacturing tolerances but also to tribological issues. Uneven disc wear as well as Thermo-Elastic Instabilities (TEI) can lead to judder. Especially the effect of the wheel suspension on the transfer of the vibrations to the driver has to be considered.
Technical Paper

Intrinsic Design of Experiments for Modeling of Internal Combustion Engines

2018-04-03
2018-01-1156
In engine research and development there are often different engine parameters that produce similar effects on the end-point results. When calibrating modern engines, a huge number of parameters needs to be set, which also includes compensation parameters for model imperfections. In this context, simpler, more robust, and physically based models should be beneficial both for calibration work load and powertrain performance. In this study, we present an experimental methodology that uses intermediate (“intrinsic”) variables instead of engine parameters. By using simple thermodynamic models, the engine parameters EGR, IVC, and PBoost could be translated into oxygen concentration, temperature and gas density at the start of injection. The reason for this transformation of data is to “move” the Design of Experiment (DoE) closer to the situation of interest (i.e. the combustion) and to be able to construct simpler and more physically based models.
Technical Paper

Investigation of Seat Suspensions with Embedded Negative Stiffness Elements for Isolating Bus Users’ Whole-Body Vibrations

2021-02-17
2021-01-5019
Bus drivers are a group at risk of often suffering from musculoskeletal problems, such as low-back pain, while bus passengers on the last-row seats experience accelerations of high values. In this paper, the contribution of K-seat in decreasing the above concern is investigated with a detailed simulation study. The K-seat model, a seat with a suspension that functions according to the KDamper concept, which combines a negative stiffness element with a passive one, is benchmarked against the conventional passive seat (PS) in terms of comfort when applied to different bus users’ seats. More specifically, it is tested in the driver’s and two different passengers’ seats, one from the rear overhang and one from the middle part. For the benchmark shake, both are optimized by applying excitations that correspond to real intercity bus floor responses when it drives over a real road profile.
Technical Paper

Holistic Approach for Improved Safety Including a Proposal of New Virtual Test Conditions of Small Electric Vehicles

2015-04-14
2015-01-0571
In the next 20 years the share of small electric vehicles (SEVs) will increase especially in urban areas. SEVs show distinctive design differences compared to traditional vehicles. Thus the consequences of impacts of SEVs with vulnerable road users (VRUs) and other vehicles will be different from traditional collisions. No assessment concerning vehicle safety is defined for vehicles within European L7e category currently. Focus of the elaborated methodology is to define appropriate test scenarios for this vehicle category to be used within a virtual tool chain. A virtual tool chain has to be defined for the realization of a guideline of virtual certification. The derivation and development of new test conditions for SEVs are described and are the main focus of this work. As key methodology a prospective methodical analysis under consideration of future aspects like pre-crash safety systems is applied.
Journal Article

Analysis of the Water Addition Efficiency on Knock Suppression for Different Octane Ratings

2020-04-14
2020-01-0551
Water injection can be applied to spark ignited gasoline engines to increase the Knock Limit Spark Advance and improve the thermal efficiency. The Knock Limit Spark Advance potential of 6 °CA to 11 °CA is shown by many research groups for EN228 gasoline fuel using experimental and simulation methods. The influence of water is multi-layered since it reduces the in-cylinder temperature by vaporization and higher heat capacity of the fresh gas, it changes the chemical equilibrium in the end gas and increases the ignition delay and decreases the laminar flame speed. The aim of this work is to extend the analysis of water addition to different octane ratings. The simulation method used for the analysis consists of a detailed reaction scheme for gasoline fuels, the Quasi-Dimensional Stochastic Reactor Model and the Detonation Diagram. The detailed reaction scheme is used to create the dual fuel laminar flame speed and combustion chemistry look-up tables.
Journal Article

Finite Element Model Reduction Applied to Nonlinear Impact Simulation for Squeak and Rattle Prediction

2020-09-30
2020-01-1558
Increasing demand for simulation accuracy often leads to increased finite element model complexity, which in turn, results in higher computational costs. As a provision, component mode synthesis approaches are employed to approximate the system response by using dynamic substructuring and model reduction techniques in linear systems. However, the use of available model reduction techniques in nonlinear problems containing the contact type of nonlinearities remains an interesting topic. In this paper, the application of a component mode synthesis method in squeak and rattle nonlinear simulation has been investigated. Critical regions for squeak and rattle of the side door model of a passenger car were modelled by nonlinear contact definition in finite element simulation. Craig-Bampton model reduction method was employed to substructure the finite element model while keeping the nonlinear contacts in the model.
Journal Article

The Effects of Wheel Design on the Aerodynamic Drag of Passenger Vehicles

2019-04-02
2019-01-0662
Approximately 25 % of a passenger vehicle’s aerodynamic drag comes directly or indirectly from its wheels, indicating that the rim geometry is highly relevant for increasing the vehicle’s overall energy efficiency. An extensive experimental study is presented where a parametric model of the rim design was developed, and statistical methods were employed to isolate the aerodynamic effects of certain geometric rim parameters. In addition to wind tunnel force measurements, this study employed the flowfield measurement techniques of wake surveys, wheelhouse pressure measurements, and base pressure measurements to investigate and explain the most important parameters’ effects on the flowfield. In addition, a numerical model of the vehicle with various rim geometries was developed and used to further elucidate the effects of certain geometric parameters on the flow field.
X