Refine Your Search

Search Results

Viewing 1 to 14 of 14
Technical Paper

Effect of Supercharging on the Intake Flow Characteristics of a Swirl-Supported Engine

2020-04-14
2020-01-0794
Although supercharged system has been widely employed in downsized engines, the effect of supercharging on the intake flow characteristics remains inadequately understood. Therefore, it is worthwhile to investigate intake flow characteristics under high intake pressure. In this study, the supercharged intake flow is studied by experiment using steady flow test bench with supercharged system and transient flow simulation. For the steady flow condition, gas compressibility effect is found to significantly affect the flow coefficient (Cf), as Cf decreases with increasing intake pressure drop, if the compressibility effect is neglected in calculation by the typical evaluation method; while Cf has no significant change if the compressibility effect is included. Compared with the two methods, the deviation of the theoretical intake velocity and the density of the intake flow is the reason for Cf calculation error.
Technical Paper

Study on the Characteristics of Different Intake Port Structures in Scavenging and Combustion Processes on a Two-Stroke Poppet Valve Diesel Engine

2020-04-14
2020-01-0486
Two-stroke engines have to face the problems of insufficient charge for short intake time and the loss of intake air caused by long valve overlap. In order to promote the power of a two-stroke poppet valve diesel engine, measures are taken to help optimize intake port structure. In this work, the scavenging and combustion processes of three common types of intake ports including horizontal intake port (HIP), combined swirl intake port (CSIP) and reversed tumble intake port (RTIP) were studied and their characteristics are summarized based on three-dimensional simulation. Results show that the RTIP has better performance in scavenging process for larger intake air trapped in the cylinder. Its scavenging efficiency reaches 84.7%, which is 1.7% higher than the HIP and the trapping ratio of the RTIP reaches 72.3% due to less short-circuiting loss, 11.2% higher than the HIP.
Technical Paper

Investigation on Cylinder Bore Deformation under Static Condition Based on Fourier Decomposition

2017-03-28
2017-01-0366
Due to the mechanical forces under static conditions, the engine cylinders cross section will not be a round circle any more once they are installed. The deformation of an engine cylinder causes increasing lubricating oil consumption and abnormal wear, resulting in worse fuel economy and emissions. However, prediction of deformation on a liner has not been made because of the complication of conditions and structure. In this study, a V6-type engine body model was built and meshed with Hypermesh suit software. Then, cylinder deformation under static condition has been simulated and analyzed. First of all, experimental work was done to verify the engine model. Basically, few parameters like pre-tightened force, structure and distribution of bolts have been investigated to figure out how the cylinder bore deformation behaves via finite element analysis. Also, a simple Matlab program was developed to process the data.
Technical Paper

The Reduction of Mechanical and Thermal Loads in a High-Speed HD Diesel Engine Using Miller Cycle with Late Intake Valve Closing

2017-03-28
2017-01-0637
Mechanical load and thermal load are the two main barriers limiting the engine power output of heavy duty (HD) diesel engines. Usually, the peak cylinder pressure could be reduced by retarding combustion phasing while introducing the drawback of higher thermal load and exhaust temperature. In this paper, Miller cycle with late intake valve closing was investigated at high speed high load condition (77 kW/L) on a single cylinder HD diesel engine. The results showed the simultaneous reduction of mechanical and thermal loads. In the meanwhile, higher boosting pressure was required to compensate the Miller loss of the intake charge during intake and compression process. The combustion temperature, cylinder pressure, exhaust temperature and NOx emission were reduced significantly with Miller cycle at the operating condition. Furthermore, the combustion process, smoke number and fuel consumption were analysed.
Technical Paper

Study on the Optimal Control Strategy of Transient Process for Diesel Engine with Sequential Turbocharging System

2016-10-17
2016-01-2157
Three-phase sequential turbocharging system with two unequal-size turbochargers is developed to improve fuel economy performance and reduce emission of the automotive diesel engine, which satisfies wide range of intake flow demand. However, it results in complicated transient control strategies under frequently changing operating conditions. The present work aims to optimize the control scheme of boost system and fuel injection and evaluate their contributions to the improvement of transient performance. A mean value model for diesel engine was built up in SIMULINK environment and verified by experiment for transient study. Then a mathematical model of optimization issue was established. Strategies of control valves and fuel injection for typical acceleration and loading processes are obtained by coupled calculating of the simulation model and optimization algorithm.
Technical Paper

Orthogonal Optimum Design of High-Speed Solenoid Valve for the Injection System of Unit Pump

2017-10-08
2017-01-2198
The electromagnetic valve driving mechanism is the significant equipment, which plays a vital role in the unit pump injection system; therefore, the performance of the electromagnetic valve directly influences the function of the control system. Based on the operation conditions of the unit pump injection system, a steady electromagnetic valve model was modified to study the influence factors of electromagnetic force and the best combination to get the maximum electromagnetic force. The validation model was verified by experiment. The effects of some crucial parameters upon the electromagnetic force were investigated in the present paper, (including working airspace, magnetic pole’s cross-sectional area, coil position, coil turn, the armature thickness). The results show that the electromagnetic force of the solenoid valve enhanced with the increase of driving current and with the decrease of working airspace.
Technical Paper

Numerical Investigation of the Intake Flow of a Four-Valve Diesel Engine

2017-10-08
2017-01-2211
The intake process plays an important role in the operation of internal combustion engines. In the present study, a three-dimensional transient simulation of a four-valve diesel engine was performed using Large Eddy Simulation (LES) model based on software CONVERGE. The mean velocity components in three directions through the intake valve curtain, the flow separation around the intake valves, the influences of inlet jet on turbulence flow field and cycle-to-cycle variation were investigated in this work. The result shows that the mean velocity distributes non-uniformly near the valve curtain at high valve lifts. In contrast, the mean velocity distribution is uniform at low valve lifts. It is found that the flow separation occurs at valve stem, valve seat and valve sealing through the outlet of the helical port. In contrast, flow separation is only observed in the valve seat through the outlet of the tangential port.
Technical Paper

Effect of the Depth of Valve Avoiding Pit on Combustion Process for a Heavy Duty Diesel Engine

2017-03-28
2017-01-0725
In diesel engines, valve avoiding pit (VAP) is often designed on the top of the piston in order to avoid the interference between the valves and the piston during the engine operation. With the continued application of the downsized or high power density diesel engines, the depth of VAP has to be further deepened due to increased valve lift for more air flow into and out of the cylinder and decreased piston top clearance for less HC/CO and soot emissions. The more and more deepening of VAP changes the combustion chamber geometry, the top clearance height and the injector relative position to the piston crown. In this paper, a 3-D in-cylinder combustion model was used for a heavy duty diesel engine to investigate the effects of the depth of VAP on combustion process and emissions. Five depths of VAP were designed in this study. In order to eliminate the influence of compression ratio, the piston clearance height was adjusted for each VAP depth to keep the same compression ratio.
Technical Paper

Effect of Geometric Structure of Cylinder Head on the Combustion Process in a Diesel Engine

2017-03-28
2017-01-0692
Due to increasingly stringent emission and fuel consumption regulations, diesel engines for vehicle are facing more and more technical challenges. Engine downsizing technology is the most promising measures to deal with these challenges at present. With the enhancement of power density, a small engine displacement with a high turbocharging technique becomes popular. In order to increase the intake mass flow rate on a downsizing diesel engine, the tilting axis of intake valve was chosen to enlarge the intake valve diameter and decrease the arc radius of intake ports. Thus cylinder head had to be redesigned to meet this demand. Geometry of cylinder head made a notable effect in organization of in-cylinder flow, fuel-air mixing quality and further combustion characteristics. 3-D CFD was a convenient and economical tool to explore effects of geometry of cylinder head on the combustion process.
Technical Paper

Effects of Control Valve Structure Parameters on the Flow Characteristics of Oil Drainage Progress of Electronic Unit Pump for Diesel Engine

2021-05-17
2021-01-5048
In the present paper, a three-dimensional (3D) internal flow field model of an electronic unit pump (EUP) fuel system oil drainage progress was established, including solenoid valve model, control valve model, high-pressure oil passage, and the plunger cavity model. From the microscopic point of view, the flow characteristics, such as pressure, velocity, and turbulence kinetic energy, are analyzed by using Fluent. This paper uses the combination of one-dimensional (1D) software AMESim and 3D software Fluent to achieve the purpose. The pressure curve of the high-pressure pipe is extracted from the control valve module of the 1D EUP fuel system model, and the velocity curve of the plunger movement is extracted from the plunger pump module. The two sets of curves are dynamically linked to the flow field calculation with a User-Defined Function (UDF), and the flow field change of the single pump fuel system control valve is calculated by Fluent.
Technical Paper

Effects of Structure and System Parameters on Fuel Leakage Characteristics of Precision Coupling Components in Fuel Injector for Modern Diesel Engine

2022-05-11
2022-01-5028
Increasing rail pressure is the development trend of high-pressure common rail system. When the rail pressure reaches ultrahigh range, fuel leakage of precision coupling components could have a significant impact on system performance. In order to investigate the effects of system and structure parameters on the leakage characteristics of precision coupling components, guide the design of ultrahigh-pressure common rail system, simulations were carried out. Variation of fuel leakage were studied with different structure and system parameters. A three-dimensional model of oil film with eccentric was developed to simulate eccentric between two parts of coupling component. The leakage in control valve component increases with common rail pressure; however, there is no obvious change in leakage of control piston component with rail pressure.
Technical Paper

Study of Swirl Ratio on Mixture Preparation with a Swirl Control Valve in a Diesel Engine

2018-09-10
2018-01-1790
Downsizing as a main-stream technology was widely used for design of future diesel engines in order to meet the increasingly stringent demands of emissions regulation and reduction of CO2 production. Design of intake system faces a considerable challenge accordingly. Discharge coefficient and swirl ratio as two main factors of intake port design have been widely investigated by researchers. However, these two parameters indicate a trade-off relationship. Therefore, it is difficult for a classical intake system to achieve a good balance between sufficient air charge and decent air-fuel radial mixing quality. A 1 L twin-intake-port single-cylinder diesel engine was studied in this paper. A swirl control valve designed to adjust the effective flow area of the filling port, was installed between the intake manifold and the intake filling port in order to achieve variation of swirl ratio. And there is no control valve for the intake spiral port.
Technical Paper

Experimental Investigation of Combustion and Emission Characteristics of Stoichiometric Stratified Flame Ignited (SFI) Hybrid Combustion in a 4-Stroke PFI/DI Gasoline Engine

2019-04-02
2019-01-0960
Controlled Auto-Ignition (CAI), also known as Homogeneous Charge Compression Ignition (HCCI), can improve the fuel economy of gasoline engines and simultaneously achieve ultra-low NOx emissions. However, the difficulty in combustion phasing control and violent combustion at high loads limit the commercial application of CAI combustion. To overcome these problems, stratified mixture, which is rich around the central spark plug and lean around the cylinder wall, is formed through port fuel injection and direct injection of gasoline. In this condition, rich mixture is consumed by flame propagation after spark ignition, while the unburned lean mixture auto-ignites due to the increased in-cylinder temperature during flame propagation, i.e., stratified flame ignited (SFI) hybrid combustion.
Technical Paper

Combustion System Optimization Across Multiple Speed/Load Points on a V8 Heavy-Duty Diesel Engine

2015-09-01
2015-01-1856
Computational Fluid Dynamics (CFD), as an effective analytical tool, has been applied at China North Engine Research Institute (CNERI) for combustion chamber design and combustion system optimization on a V8 heavy -duty diesel engine in order to meet increasingly stringent emission targets. The design of combustion system involves great number of parameteric optimizations such as the number of nozzle holes, the spray angle, the swirl ratio and the piston bowl shape. 3-D CFD was a convenient and cheap tool to explore the effects of all these parameters to the engine performance, compared with extensive hardware testing. 1-D modeling was used to set up boundary conditions at intake valve closure for 3-D CFD modeling during the closed-cycle. AVL FIRE software with a widely used combustion model, ECFM-3Z model, was used for 3-D simulation. Two sets of nozzle holes, four spray angles and three swirl levels were utilized and optimized under rated power.
X