Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Theoretical and Experimental Flow Analysis of Exhaust Manifolds for PZEV

2007-08-05
2007-01-3444
As the current and future emission regulations become stringent, the research on exhaust manifold with CCC (Close Coupled Catalyst) has been the interesting and remarkable subject. To design of exhaust manifold with CCC is a difficult task due to the complexity of the flow distribution caused by the pulsating flows that are emitted at the exhaust ports. This study is concerned with the theoretical and experimental approach to improve catalyst flow uniformity through the basic understanding of exhaust flow characteristics. Computational and experimental approach to the flow for exhaust manifold of conventional cast type, stainless steel bending type with 900 cell CCC system in a 4-cylinder gasoline engine was performed to investigate the flow distribution of exhaust gases.
Technical Paper

A Study for Improving the Resistance to Fretting Corrosion of SCr 420 Gear Steel

2007-08-05
2007-01-3734
A study for improving the resistance to fretting corrosion of SCr 420 pinion gear was conducted. Fretting is the damage to contacting surfaces experiencing slight relative reciprocating sliding motion of low amplitude. Fretting corrosion is the fretting damage to unlubricated contacting surfaces accompanied by corrosion, mostly oxidation that occurs if the fretting occurs in air. Two kinds of conventional heat treatment and a newly designed one suggested for improving the resistance to the fretting corrosion of pinion gear were compared each other to find out what is the main factor for generating fretting corrosion phenomenon. Increased carbon potential at both the heating and diffusing zone and reduced time of tempering was found out to be a solution for improving the resistance to fretting corrosion of forged and heat treated gear steel. On the contrary, modified carbo-nitriding using ammonia gas has been getting worse the fretting corrosion problem.
Technical Paper

A Study of Crack Propagation Characteristic for Inner Belt-Layer in TBR Tire

2004-03-08
2004-01-0632
In order to simulate the crack connection between cords and the inter-ply crack growth in the belt-layer of a real TBR (Truck and Bus Radial) tire, we tested two-ply rubber-cord laminate specimens with exposed edges in constant displacement control. We evaluated measurement of the crack connection when crack reaches the half of the length between 45° aligned cords, and measured the amount of the crack growth by the steel probe method. We then performed a two-dimensional analysis of the crack connection between cords at the exposed edges. The theoretical life of the specimens from the crack connection life between cords (the critical value) and from this critical value to the final failure can thus be calculated by the used of tearing energy. The theoretical life was compared with those of the experimental life. The life prediction up to the critical value has an error of 20% compared to experimental life, and up to the final failure about 65% error.
Technical Paper

Optimization for Brake Feeling in Vehicle without Brake Noise

2016-09-18
2016-01-1928
Recently, upon customer’s needs for noise-free brake, carmakers are increasingly widely installing damping kits in their braking systems. However, an installation of the damping kits may excessively increase softness in the brake system, by loosening stroke feeling of a brake pedal and increasing compressibility after durability. To find a solution to alleviate this problem, we first conducted experiments to measure compressibility of shims by varying parameters such as adhesive shims (e.g., bonding spec., steel and rubber thickness), piston’s shapes (e.g., different contact areas to the shims), and the numbers of durability. Next, we installed a brake feeling measurement system extended from a brake pedal to caliper. We then compared experimental parameters with brake feeling in a vehicle. Finally, we obtained an optimized level of brake feeling by utilizing the Design for Six Sigma (DFSS).
Technical Paper

A Comparative Study of Non-Asbestos Organics vs. Low Steel Lomets for Humidity Sensitivity

2012-09-17
2012-01-1788
Non-Asbestos Organic (NAO) disc pads and Low Steel Lomet disc pads were subjected to high and low humidity conditions to discover how humidity affects these two classes of formulations for physical properties, friction, wear and noise characteristics. The 2 classes of formulations show similarities and differences in response to increasing humidity. The humidity effect on deformation of the surface microstructure of the gray cast iron disc is also investigated. Humidity implications for pad quality control and brake testing are discussed.
Technical Paper

Strength Analysis and Fatigue Life Prediction of an Extra Large Dump Truck Deck and Subframe

2013-04-08
2013-01-1211
An engineering strategy to develop a new 27-ton dump truck is introduced in the process of design and analysis. Main engineering concerns in development of the new dump truck are focused on reducing weight as much as 180kg without deteriorating structural strength and fatigue life of its upper body - deck and subframe. To achieve this goal, a stress analysis and a fatigue life prediction based on CAE technique are employed at the early stage of design process. A finite element model of the full vehicle was constructed for the strength analysis. Then the fatigue life was predicted through the strength analysis and an S-N curve of high strength steel. The S-N curve for welded structures made of high strength steel was used along with a prototype vehicle's endurance test in order to set strength targets. As a result, the upper body was successfully developed without any fatigue issues.
Technical Paper

Full Aluminum Body Design Considering Part-Specific Requirements

2023-04-11
2023-01-0603
In the era of electric vehicles(EVs), the need for weight reduction of the vehicle body is increasing in order to maximize the driving distance of the EV. Accordingly, there is an increasing need for research to efficiently apply lightweight materials, such as aluminum and CFRP, to the EV body parts. In this study, design methodologies and optimization measures to increase lightweight efficiency when applying lightweight materials to EVs will be discussed. Based on theoretical basis and basic performance of each part of the EV, the “Material Substitution Method” of replacing existing parts of a steel body with aluminum materials will be defined, and the optimal design process on how to overcome performance trade-off caused by material characteristics will be addressed. In applying the “Material Substitution Method” to the actual EV body design process, it was possible to convert 93% of the components from steel to aluminum and reduce the overall weight of the body by 23%.
Technical Paper

Improvement of Fatigue Strength of Automatic Transmission Gear by Developing Controlled Rolled Alloy Steel

2000-03-06
2000-01-0614
The controlled rolling process has been introduced to increase strength and toughness of alloy steels for the application of transmission gear. Cr-Mo alloy steel containing 0.02% Nb was controlled rolled in the temperature range of 870-970°C, showed fine austenite grain size, about ASTM No.11, resulted from the effects of recrystallization and Nb(C,N) precipitation. To investigate the effects of grain refinement on mechanical properties, several tests were conducted for the newly developed controlled rolled steel and conventional Ni-Cr-Mo alloy steel after carburizing. The new steel showed 2.1 times higher pitting resistance than the conventional steel. Fatigue limits of new and conventional steels were 950 and 930 MPa respectively. Charpy impact energy of new steel was improved about 35% compared with the conventional steel. Consequently, the pinion gear from the new steel instead of conventional one showed enhanced performance, especially pitting resistance, in dynamometer test.
Technical Paper

A BIW Structure Research of Light Weight Vehicle with High Stiffness by Steel

2015-03-10
2015-01-0061
The focus of this paper is to develop an innovative vehicle layout and optimize vehicle body structure with the latest lightweight steel technologies, such as hydro-forming and hot stamping. Our BIW structure achieved a mass savings of 28 kg (−10%) compared to the mass of baseline BIW structure. (Base BIW : MD_Elantra)
X