Refine Your Search

Topic

Author

Search Results

Technical Paper

Brake and Clutch Pedal System Optimization Using Design for Manufacture and Assembly

1992-02-01
920774
This paper describes the application of the Design for Manufacture and Assembly (DFMA) method at Chrysler. Attention is focused on the development of the clutch and brake pedal and bracketry system of the PL project in the Small Car Platform. The Chrysler DFMA procedure including competitive evaluation and value engineering was utilized during the initial design phase involving product concept development from the original functional and manufacturing requirements. After the first laboratory tests, a number of key design and manufacturing concerns surfaced and led to a second cycle of DFMA analysis. The procedure permits major design functions and manufacturing and assembly process issues and criteria to be incorporated in the initial design stages.
Technical Paper

Permeation of Gasoline-Alcohol Fuel Blends Through High-Density Polyethylene Fuel Tanks with Different Barrier Technologies

1992-02-01
920164
The automobile industry has been using high-density polyethylene (HDPE) as a material to fabricate fuel tanks. Because untreated HDPE is permeable to the primary constituents of gasoline, these fuel tanks are now being produced with various barrier technologies that significantly reduce this permeation rate. Four currently available barrier technologies are fluorination, sulfonation, coextrusion, and the laminar barrier technology. These technologies have successfully proven to decrease the permeation rate of pure gasoline. However, it is suspected that their effectiveness may be reduced when alcohols are introduced into the fuel blend. In this work, we determine the permeation rates of gasoline-alcohol fuel blends through HDPE by conducting tests on 22-gallon HDPE fuel tanks and on small HDPE bottles fabricated with and without these barrier technologies. The goal of this study is to provide a comprehensive evaluation of these four barrier technologies.
Technical Paper

A Comparison of Aluminum, Sheet Molding Compound and Steel for Hoods

1992-02-01
920242
A unique opportunity arose to make a direct comparison of aluminum, sheet molding compound (SMC) and steel using a common hood design. In considering all possible material combinations of inner and outer panels, it was discovered that some of the combinations were incompatible due to material properties. Only the compatible material combinations were considered. Three different joining techniques - welding, bonding and bonded hem flanging - were evaluated. The cost, weight and structural performance of the chosen hood material combinations were established. Areas of further development were identified, including design optimization for specific material combinations.
Technical Paper

The Effect of Chromium and Chromium-Free Post-Phosphating Rinses on the Corrosion Performance of Zinc and Zinc Alloy Coated Sheet Steels After Five Years Outdoor Scab Corrosion Exposure

1993-10-01
932358
A selection of commercially available chromium and chromium-free post phosphate rinses along with a deionized water rinse were evaluated over several zinc and zinc-alloy coated sheet steels. The test specimens were pretreated and electrocoated on-line in an automotive assembly plant. The effect of the rinse treatments on the cosmetic corrosion performance of the substrates, after 5 years of exposure in an outdoor scab corrosion test was determined. After this exposure none of the rinse treatments had performed better than deionized water rinse on zinc and zinc-iron coated sheet. The zinc-nickel coating showed improved scribe creepage when treated with the Cr+6/Cr+3 rinse. Data is provided comparing the concentration of the treatments used vs scribe creepage and chipping corrosion paint loss.
Technical Paper

Five Year Outdoor Scab Corrosion Results on Zinc and Zinc Alloy Coated Sheet Steels

1993-10-01
932361
A comprehensive selection of automotive sheet steels were exposed in an outdoor scab corrosion test to provide a base-line of cosmetic corrosion performance. Eighteen different coated sheet steels along with CRS as a control were processed using two commercially available zinc phosphate chemistries. The phosphating was done using both immersion and spray phosphate processes in a laboratory and an automotive assembly plant. Scribe creepage results are reported for 5 years outdoor scab exposure. Comparisons of the scribe creepage behavior of CRS, zinc, and zinc alloy coatings and the effect of the phosphate treatment are provided. An estimate of 10 years field performance is made.
Technical Paper

Experience in Sand Casting Aluminum MMC Prototype Components

1993-03-01
930179
Typical sand-casting techniques have been shown to be inappropriate in pouring particulate reinforced aluminum metal matrix composite (Al-MMC) castings. New gating/risering configurations were necessary to produce castings of acceptable soundness. Several automotive components, including brake rotors, cylinder liners and camshaft thrust plates, were prepared using special techniques. Initial durability test results of several Al-MMC prototype components are presented.
Technical Paper

RTM Body Panels for Viper Sports Car

1993-03-01
930468
Resin transfer molding (RTM) is the process of choice for the Body Panels of the Viper Sports car. The objective of this paper is to outline the reasons for the choice of RTM, and discuss development of technology for Class A surfaces and the paint system. Accomplishments to date and finally the work yet to be completed will also be defined. Conclusions from the work to date indicate that the RTM process enables a reduction in vehicle development time through faster prototypes and tool build times and that high quality, Class A surfaces can be successfully achieved even with epoxy tools. Additional work is ongoing to reduce cycle times and finishing costs, and to improve the in-process dimensional stability.
Technical Paper

Dodge Ram Pickup Vehicle: From Human Factors Development to Production Intent Metal Assembly

1993-11-01
932988
To evaluate and refine interior architecture of the new Dodge Ram pickup truck three years before production, a road worthy interior package validation buck was built using a fiberglass body shell. Molds for the shell were made using CAD/CAM techniques. Advanced CAD/CAM techniques were used to build the interior buck of a subsequent model from individual panels molded in carbon fiber. This buck also included inner structural panels and interior trim components taken from CAD data. For this and subsequent new vehicle programs, refinement of construction techniques allows the bucks to serve as aids in product design and manufacturing feasibility studies.
Technical Paper

Chrysler 8.0-Liter V-10 Engine

1993-11-01
933033
Chrysler Corporation has developed an 8.0-liter engine for light truck applications. Numerous features combine to produce the highest power and torque ratings of any gasoline-fueled light truck engine currently available while also providing commensurate durability. These features include: a deep-skirt ten-cylinder 90° “V” block, a Helmholtz resonator intake manifold that enhances both low and mid-range torque, light die cast all-aluminum pistons for low vibration, a unique firing order for smooth operation, a “Y” block configuration for strength and durability, a heavy duty truck-type thermostat to control warm up, and a direct ignition system.
Technical Paper

Body-in-White Prototype Process in Chrysler's Jeep/Truck Platform

1993-11-01
933038
Chrysler Corporation's Jeep and Truck platform implemented a new design and prototype process for the body-in -white of a new pickup truck. A team approach achieved concurrent body design, stamping die design, assembly process development, and assembly tooling development. The first domestic US industry use of a 100% electronic design and release system was instrumental in the process. The new process produced a prototype body-in-white on time at 95 WBVP (weeks before volume production) with the highest level of production-intent components ever achieved within Chrysler at this stage of development.
Technical Paper

Chrysler 3.5 Liter V-6 Engine

1993-03-01
930875
A new 3.5 liter, 60 degrees V6 engine has been designed specifically for Chrysler's 1993 MY line of mid-size sedans - Dodge Intrepid, Eagle Vision, Chrysler Concorde and New Yorker. This new engine features many new components for enchanced performance. The cylinder head has a single overhead cam, four valve-per - cylinder design. The intake system is a cross-flow design equipped with dual throttle bodies, and the manifold also incorporates a vacuum operated tuning valve that increases the mid-range torque of the engine. A windage tray is used on every engine to reduce drag on the rotating components within the crankcase. Dual knock sensors (one per cylinder bank) are used to take advantage of the aggressive spark advance and high compression ratio. The engine also utilizes a plastic, helical, water pump impeller that contributes to low parasitic power losses. The engine incorporates many components and features to ensure durability.
Technical Paper

New Concept Modular Manual Transmission Clutch and Flywheel Assembly

1992-09-01
922110
Most United States vehicle assembly plants produce significantly more automatic transmission equipped vehicles than manual transmission vehicles. Assembling these two vehicles on a common production line can create complexity problems. This paper describes the design and development of a pre-assembled manual transmission clutch and flywheel modular assembly which reduces most of these problems. This assembly is used on the 1993 model year mini-van with a 2.5L four cylinder engine. This modular clutch system utilizes the same starter ring gear carrier (driveplate) used on automatic transmission equipped vehicles. It pilots into the crankshaft similar to the automatic transmission torque converter. It is balanced as an assembly which results in a lower system imbalance. A significant system piece cost saving, in comparison with today's competitive market, was achieved.
Technical Paper

Springback Prediction in Sheet Forming Simulation

1994-03-01
940937
Although numerical simulation techniques for sheet metal forming become increasingly maturing in recent years, prediction of springback remains a topic of current investigation. The main point of this paper is to illustrate the effectiveness of a modelling approach where static implicit schemes are used for the prediction of springback regardless whether a static implicit or dynamic explicit scheme is used in the forming simulation. The approach is demonstrated by revisiting the 2-D draw bending of NUMISHEET'93 and numerical results on two real world stampings.
Technical Paper

In-Situ Phase-Shift Measurement of the Time-Resolved UBHC Emissions

1995-02-01
950161
The UBHC emissions during cold starting need to be controlled in order to meet the future stringent standards. This requires a better understanding of the characteristics of the time resolved UBHC signal measured by a high frequency FID and its phasing with respect to the valve events. The computer program supplied with the instrument and currently used to compute the phase shift has many uncertainties due to the unsteady nature of engine operation during starting. A new technique is developed to measure the in-situ phase shift of the UBHC signal under the transient thermodynamic and dynamic conditions of the engine. The UBHC concentration is measured at two locations in the exhaust manifold of one cylinder in a multicylinder port injected gasoline engine. The two locations are 77 mm apart. The downstream probe is positioned opposite to a solenoid-operated injector which delivers a gaseous jet of hydrocarbon-free nitrogen upon command.
Technical Paper

Achieving Dent Resistance Improvements and Weight Reduction Through Stamping Process Optimization and Steel Substitution

1996-02-01
960025
Resistance to dents and dings, caused by plant handling and in-service use, is generally recognized as an important performance requirement for automotive outer body panels. This paper examines the dent resistance improvements that can be achieved by maximizing surface stretch, through adjustments to the press settings, and substitution of a higher strength steel grade. Initially, the stamping process was optimized using the steel supplied for production: a Ti/Nb-stabilized, ultra low carbon (ULC) grade. The stamping process was subsequently optimized with a Nb-stabilized, rephosphorized ULC steel, at various thicknesses. The formed panels were evaluated for percent surface stretch, percent thinning, in-panel yield strength after forming, and dent performance. The results showed that dent resistance can be significantly improved, even at a reduced steel thickness, thus demonstrating a potential for weight savings.
Technical Paper

Cycle-by-Cycle Analysis of HC Emissions During Cold Start of Gasoline Engines

1995-10-01
952402
A cycle-by-cycle analysis of HC emissions from each cylinder of a four-stroke V-6, 3.3 L production engine was made during cold start. The HC emissions were measured in the exhaust port using a high frequency flame ionization detector (FID). The effect of the initial startup position of the piston and valves in the cycle on combustion and HC emissions from each cylinder was examined. The mass of fuel injected, burned and emitted was calculated for each cycle. The equivalence ratio of the charge in the firing cycles was determined. The analysis covered the first 120 cycles and included the effect of engine transients on HC emissions.
Technical Paper

An Evaluation of Turbulent Kinetic Energy for the In-Cylinder Flow of a Four-Valve 3.5L SI Engine Using 3-D LDV Measurements

1997-02-24
970793
A better understanding of turbulent kinetic energy is important for improvement of fuel-air mixing, which can lead to lower emissions and reduced fuel consumption. An in-cylinder flow study was conducted using 1548 Laser Doppler Velocimetry (LDV) measurements inside one cylinder of a 3.5L four-valve engine. The measurement method, which simultaneously collects three-dimensional velocity data through a quartz cylinder, allowed a volumetric evaluation of turbulent kinetic energy (TKE) inside an automotive engine. The results were animated on a UNIX workstation, using a 3D wireframe model. The data visualization software allowed the computation of TKE isosurfaces, and identified regions of higher turbulence within the cylinder. The mean velocity fields created complex flow patterns with symmetries about the center plane between the two intake valves. High levels of TKE were found in regions of high shear flow, attributed to the collisions of intake flows.
Technical Paper

Tumble and Swirl Quantification within a Motored Four-Valve SI Engine Cylinder Based on 3-D LDV Measurements

1997-02-24
970792
The flow field contained within ten planes inside a cylinder of a 3.5 liter, 24-valve, V-6 engine was mapped using a three-dimensional Laser Doppler Velocimetry (3-D LDV) system. A total of 1,548 LDV measurement locations were used to construct the time history of the in-cylinder flow fields during the intake and compression strokes. The measurements began during the intake stroke at a crank angle of 60° ATDC and continued until approximately 280° ATDC. The ensemble averaged LDV measurements allowed for a quantitative analysis of the dynamic in-cylinder flow process in terms of tumble and swirl motions. Both of these quantities were calculated at every 1.8 crank degrees during the described measurement interval. Tumble calculations were performed about axes in multiple planes in both the Cartesian directions perpendicular to the plane of the piston top. Swirl calculations were also accomplished in multiple planes that lie parallel to the plane of the piston top.
Technical Paper

Impact Response of Foam: The Effect of the State of Stress

1996-11-01
962418
The Finite Element predictions of the physical response of foams during impact by a rigid body (such as, the Hybrid III head form) is determined by material law equations generally approximated based on the theory of elastoplasticity. However, the structural aspect of foam, its discontinuous nature, makes it difficult to apply the laws of continuum mechanics and construct constitutive equations for foam-like material. One part of the problem relates to the state of stress. In materials such as steel, the state of hydrostatic stress does not affect the stress strain behavior under uniaxial compression or tension in plastic regime. In other words, when steel is subject to hydrostatic pressures the stress strain characteristic can be predicted from a uniaxial test. However, if the stresses acting on a section of foam are triaxial, the response of a head-form may be different than predicted from uniaxial test data.
Technical Paper

Can the k-ε Model Withstand the Challenges Posed by Complex Industrial Flows?

1997-04-08
971516
The purpose of this paper is to present numerical solution for three-dimensional flow about rotating short cylinders using the computer program AIRFLO3D. The flow Reynolds number was kept at 106 for all computations. The drag forces on the cylinder were obtained for different rotational speeds. Predictions were obtained for both an isolated cylinder and a cylinder on a moving ground. The standard k-ε model was employed to model the turbulence. Computed drag coefficients agreed well with the previous experimental data up to a spin ratio (=rω/V) of 1.5.
X