Refine Your Search

Topic

Search Results

Viewing 1 to 13 of 13
Journal Article

Real Time Virtual Temperature Sensor for Transmission Clutches

2011-04-12
2011-01-1230
Many experiments have demonstrated that clutch overheating is a major cause of clutch deterioration. Clutch friction material deterioration not only leads to clutch failure, but also causes poor shift quality. Unfortunately, it is not practical to monitor each individual clutch temperature in a production vehicle due to high costs or technical challenges. This paper introduces a proposal for a virtual clutch temperature sensor to monitor the real time clutch temperature changes in Chrysler transmissions with PWM solenoid based control systems. Both vehicle and laboratory dynamometer (dyno) tests demonstrate that the model results match very closely with the thermocouple temperature measurements under many different driving conditions. The real time virtual temperature sensor provides a tool for clutch surface overheat protection and for design improvement and enhancement to shift quality.
Journal Article

Rotating Clutch Temperature Model Development Using Rapid Prototype Controllers

2012-04-16
2012-01-0625
Due to the multitude of external design constraints, such as increasing fuel economy standards, and the increasing number of global vehicle programs, developers of automotive transmission controls have to cope with increasing levels of powertrain system complexity. Achieving these requirements while improving system quality, reducing development cost and improving time to market is a very challenging task. To achieve this goal, a rapid prototype controller was used to develop a new transmission clutch temperature model. This model is used to detect clutch surface overheating, improve design and enhance shift quality.
Journal Article

Estimation of One-Sided Lower Tolerance Limits for a Weibull Distribution Using the Monte Carlo Pivotal Simulation Technique

2013-04-08
2013-01-0329
This paper introduces a methodology to calculate confidence bounds for a normal and Weibull distribution using Monte Carlo pivotal statistics. As an example, a ready-to-use lookup table to calculate one-sided lower confidence bounds is established and demonstrated for normal and Weibull distributions. The concept of one-sided lower tolerance limits for a normal distribution was first introduced by G. J. Lieberman in 1958 (later modified by Link in 1985 and Wei in 2012), and has been widely used in the automotive industry because of the easy-to-use lookup tables. Monte Carlo simulation methods presented here are more accurate as they eliminate assumptions and approximations inherent in existing approaches by using random experiments. This developed methodology can be used to generate confidence bounds for any parametric distribution. The ready-to-use table for the one-sided lower tolerance limits for a Weibull distribution is presented.
Journal Article

Transmission Torque Converter Arc Spring Damper Dynamic Characteristics for Driveline Torsional Vibration Evaluation

2013-04-08
2013-01-1483
Torsional vibration dampers are used in automatic and manual transmissions to provide passenger comfort and reduce damage to transmission & driveline components from engine torsionals. This paper will introduce a systematic method to model a torque converter (TC) arc spring damper system using Simdrive software. Arc spring design parameters, dynamometer (dyno) setup, and complete powertrain/driveline system modeling and simulation are presented. Through arc spring dynamometer setup subsystem modeling, the static and dynamic stiffness and hysteresis under different engine loads and engine speeds can be obtained. The arc spring subsystem model can be embedded into a complete powertrain/driveline model from engine to wheels. Such a model can be used to perform the torsional analysis and get the torsional response at any location within the powertrain/driveline system. The new methodology enables evaluation of the TC damper design changes to meet the requirements.
Journal Article

Random Vibration Testing Development for Engine Mounted Products Considering Customer Usage

2013-04-08
2013-01-1007
In this paper, the development of random vibration testing schedules for durability design verification of engine mounted products is presented, based on the equivalent fatigue damage concept and the 95th-percentile customer engine usage data for 150,000 miles. Development of the 95th-percentile customer usage profile is first discussed. Following that, the field engine excitation and engine duty cycle definition is introduced. By using a simplified transfer function of a single degree-of-freedom (SDOF) system subjected to a base excitation, the response acceleration and stress PSDs are related to the input excitation in PSD, which is the equivalent fatigue damage concept. Also, the narrow-band fatigue damage spectrum (FDS) is calculated in terms of the input excitation PSD based on the Miner linear damage rule, the Rayleigh statistical distribution for stress amplitude, a material's S-N curve, and the Miles approximate solution.
Journal Article

Development of Additional SAE J2643 Standard Reference Elastomers

2011-04-12
2011-01-0017
The first set of SAE J2643 Standard Reference Elastomers (SRE) was developed in 2004. It was composed of a group of 10 compounds covering multiple elastomer families. Since then, more advanced materials from many elastomer families have been introduced to the automotive industry. The purpose of this study is to add a few more reference compounds to SAE J2643, to enhance the portfolio on FKM, AEM and ACM to reflect advancements in elastomer technology, and make it suitable for a variety of fluids, such as transmission fluid and engine oil. Fourteen standard elastomer compounds were involved in this study, covering various materials currently used in automotive powertrain static and dynamic sealing applications. Participants include OEMs, major rubber manufacturers, a fluid additive company and an independent lab. Manufacturers of each test compound provided formulations, designated ingredients from defined sources, and detailed mixing and molding procedures.
Technical Paper

Design and Control of Transmission Systems using Physical Model Simulation

2010-04-12
2010-01-0898
Physical modeling has been used by the industry to improve development time and produce a quality product. In this paper, we will describe two methods used in system control to take advantage of the physical model. One method describes a complete transmission physical model with a full system control utilizing co-simulation techniques. Data will be presented, and comparison to vehicle data will be conducted and verified. The second method will illustrate how to utilize the physical model to improve system design and modification. In this method, vehicle data will be used as inputs to the model, the model output will be verified against vehicle output data. The two methods are excellent tools for the Design For Six Sigma process (DFSS design).
Technical Paper

Fatigue Based Damage Analysis with Correlation to Customer Duty Cycle Using Design Reliability and Confidence

2010-04-12
2010-01-0200
This paper will define the process for correlating fatigue based customer duty cycle with laboratory bench test data. The process includes the development of the Median and Design Load-Life curve equations. The Median Load-Life curve is a best fit linear regression; whereas, the Design Load-Life curve incorporates component specific reliability and confidence targets. To account for the statistical distribution of fatigue life, due to sample size, the one-side lower-bound tolerance limit method ( Lieberman, 1958 ) will be utilized. This paper will include a correlation between the predicted design fatigue life and the actual product life.
Technical Paper

A Design for Six Sigma Approach to Optimize a Front-Wheel-Drive Transmission for Improved Efficiency and Robustness

2011-04-12
2011-01-0720
Environmental concerns and government regulations are factors that have led to an increased focus on fuel economy in the automotive industry. This paper identifies a method used to improve the efficiency of a front-wheel-drive (FWD) automatic transmission. In order to create improvements in large complex systems, it is key to have a large scope, to include as much of the system as possible. The approach taken in this work was to use Design for Six Sigma (DFSS) methodology. This was done to optimize as many of the front-wheel-drive transmission components as possible to increase robustness and efficiency. A focus of robustness, or consistency in torque transformation, is as important as the value of efficiency itself, because of the huge range of usage conditions. Therefore, it was necessary to find a solution of the best transmission component settings that would not depend on specific usage conditions such as temperatures, system pressures, or gear ratio.
Technical Paper

Assessing the Likelihood of Binding in Distorted Stepped Radius Cylinder Bores

2014-04-01
2014-01-0395
Interference assessments of a stepped-radius power-train component moving within a deformed stepped bore often arise during engine and transmission development activities. For example, when loads are applied to an engine block, the block distorts. This distortion may cause a cam or crankshaft to bind or wear prematurely in its journals as the part rotates within them. Within an automatic transmission valve body, care must be taken to ensure valve body distortion under oil pressure, assembly, and thermal load does not cause spool valves to stick as they translate within the valve body. In both examples, the mechanical scenario to be assessed involves a uniform or stepped radius cylindrical part maintaining a designated clearance through a correspondingly shaped but distorted bore. These distortions can occur in cross-sections (“out-of-round”) or along the bore (in an “s” or “banana” shaped distortions).
Technical Paper

Development of a Hybrid Powertrain Active Damping Control System via Sliding Mode Control Scheme

2013-04-08
2013-01-0486
This paper presents the design of a hybrid powertrain damping control algorithm using the sliding mode control (SMC) scheme. Motor control-based active damping control strategy is used to ensure smooth drive line operation and provide the driver with seamless driving experience. In the case of active damping control, motor and engine speeds are measured to monitor the driveline state, and corrective motor torques are generated to dampen out drive line vibrations. Drive lines are prone to internal vibration (engine, clutches and motors) as well as external disturbances caused by road inputs. As such, fast-response actuator-based damping control systems are desirable in a hybrid powertrain application, where a torque converter is generally not used. The most significant aspect of an active damping control algorithm is the error calculation, based on proper states information, and torque determination based on the adaptive control gain applied to the nonlinear system.
Technical Paper

Tonal Metrics in the Presence of Masking Noise and Correlation to Subjective Assessment

2014-04-01
2014-01-0892
As the demand for Sound Quality improvements in vehicles continues to grow, robust analysis methods must be established to clearly represent end-user perception. For vehicle sounds which are tonal by nature, such as transmission or axle whine, the common practice of many vehicle manufacturers and suppliers is to subjectively rate the performance of a given part for acceptance on a scale of one to ten. The polar opposite of this is to measure data and use the peak of the fundamental or harmonic orders as an objective assessment. Both of these quantifications are problematic in that the former is purely subjective and the latter does not account for the presence of masking noise which has a profound impact on a driver's assessment of such noises. This paper presents the methodology and results of a study in which tonal noises in the presence of various level of masking noise were presented to a group of jurors in a controlled environment.
Technical Paper

Studies on AC Suction Line Pressure Drop using 1D Modeling

2013-04-08
2013-01-1503
In an automotive air-conditioning (AC) system, the amount of work done by the compressor is also influenced by the suction line which meters the refrigerant flow. Optimizing the AC suction line routing has thus become an important challenge and the plumbing designers are required to come up with innovative packaging solutions. These solutions are required in the early design stages when prototypes are not yet appropriate. In such scenarios, one-dimensional (1D) simulations shall be employed to compute the pressure drop for faster and economical solution. In this paper, an approach of creating a modeling tool for suction line pressure drop prediction is discussed. Using DFSS approach L12 design iterations are created and simulations are carried out using 1D AMESim software. Prototypes are manufactured and tested on HVAC bench calorimeter. AC suction line pressure drop predicted using the 1D modeling co-related well with the test data and the error is less than 5%.
X