Refine Your Search

Topic

Search Results

Journal Article

Chassis Dynamometer as a Development Platform for Vehicle Hardware In-the-Loop “VHiL”

2013-05-15
2013-01-9018
This manuscript provides a review of different types and categorization of the chassis dynamometer systems. The review classifies the chassis dynamometers based on the configuration, type of rollers and the application type. Additionally the manuscript discusses several application examples of the chassis dynamometer including: performance and endurance mileage accumulation tests, fuel efficiency and exhaust emissions, noise, vibration and harshness testing (NVH). Different types of the vehicle attachment system in the dynamometer cell and its influences on the driving force characteristics and the vehicle acoustic signature is also discussed. The text also highlights the impact of the use of the chassis dynamometer as a development platform and its impact on the development process. Examples of using chassis dynamometer as a development platform using Vehicle Hardware In-the-Loop (VHiL) approach including drivability assessment and transmission calibrations are presented.
Technical Paper

Teen Drivers’ Understanding of Instrument Cluster Indicators and Warning Lights from a Gasoline, a Hybrid and an Electric Vehicle

2020-04-14
2020-01-1199
In the U.S., the teenage driving population is at the highest risk of being involved in a crash. Teens often demonstrate poor vehicle control skills and poor ability to identify hazards, thus proper understanding of automotive indicators and warnings may be even more critical for this population. This research evaluates teen drivers’, between 15 to 17 years of age, understanding of symbols from vehicles featuring advanced driving assistant systems and multiple powertrain configurations. Teen drivers’ (N=72) understanding of automotive symbols was compared to three other groups with specialized driving experience and technical knowledge: automotive engineering graduate students (N=48), driver rehabilitation specialists (N=16), and performance driving instructors (N=15). Participants matched 42 symbols to their descriptions and then selected the five symbols they considered most important.
Technical Paper

Cooperative Mandatory Lane Change for Connected Vehicles on Signalized Intersection Roads

2020-04-14
2020-01-0889
This paper presents a hierarchical control architecture to coordinate a group of connected vehicles on signalized intersection roads, where vehicles are allowed to change lane to follow a prescribed path. The proposed hierarchical control strategy consists of two control levels: a high level controller at the intersection and a decentralized low level controller in each car. In the hierarchical control architecture, the centralized intersection controller estimates the target velocity for each approaching connected vehicle to avoid red light stop based on the signal phase and timing (SPAT) information. Each connected vehicle as a decentralized controller utilizes model predictive control (MPC) to track the target velocity in a fuel efficient manner. The main objective in this paper is to consider mandatory lane changes. As in the realistic scenarios, vehicles are not required to drive in single lane. More specifically, they more likely change their lanes prior to signals.
Technical Paper

A User Configurable Powertrain Controller with Open Software Management

2007-04-16
2007-01-1601
The emphasis on vehicle fuel economy and tailpipe emissions, coupled with a trend toward greater system functionally, has prompted automotive engineers to develop on-board control systems with increased requirements and complexity. Mainstream engine controllers regulate fuel, spark, and other subsystems using custom solutions that incorporate off-the-shelf hardware components. Although the digital processor core and the peripheral electronics may be similar, these controllers are targeted to fixed engine architectures which limit their flexibility across vehicle platforms. Moreover, additional software needs are emerging as electronics continue to permeate the ground transportation sector. Thus, automotive controllers will be required to assume increased responsibility while effectively communicating with distributed hardware modules.
Technical Paper

Development of New Turbulence Models and Computational Methods for Automotive Aerodynamics and Heat Transfer

2008-12-02
2008-01-2999
This paper is a review of turbulence models and computational methods that have been produced at Clemson University's Advanced Computational Research Laboratory. The goal of the turbulence model development has been to create physics-based models that are economically feasible and can be used in a competitive environment, where turnaround time is a critical factor. Given this goal, all of the work has been focused on Reynolds-Averaged Navier-Stokes (RANS) simulations in the eddy-viscosity framework with the majority of the turbulence models having three transport equations in addition to mass, momentum, and energy. Several areas have been targeted for improvement in turbulence modeling for complex flows such as those found in motorsports aerodynamics: the effects of streamline curvature and rotation on the turbulence field, laminar-turbulent transition, and separated shear layer rollup and breakdown.
Technical Paper

A Review of Spark-Ignition Engine Air Charge Estimation Methods

2016-04-05
2016-01-0620
Accurate in-cylinder air charge estimation is important for engine torque determination, controlling air-to-fuel ratio, and ensuring high after-treatment efficiency. Spark ignition (SI) engine technologies like variable valve timing (VVT) and exhaust gas recirculation (EGR) are applied to improve fuel economy and reduce pollutant emissions, but they increase the complexity of air charge estimation. Increased air-path complexity drives the need for cost effective solutions that produce high air mass prediction accuracy while minimizing sensor cost, computational effort, and calibration time. A large number of air charge estimation techniques have been developed using a range of sensors sets combined with empirical and/or physics-based models. This paper provides a technical review of research in this area, focused on SI engines.
Technical Paper

Criticality Assessment of Simulation-Based AV/ADAS Test Scenarios

2022-03-29
2022-01-0070
Testing any new safety technology of Autonomous Vehicles (AV) and Advanced Driver Assistance Systems (ADAS) requires simulation-based validation and verification. The specific scenarios used for testing, outline incidences of accidents or near-miss events. In order to simulate these scenarios, specific values for all the above parameters are required including the ego vehicle model. The ‘criticality’ of a scenario is defined in terms of the difficulty level of the safety maneuver. A scenario could be over-critical, critical, or under-critical. In over-critical scenarios, it is impossible to avoid a crash whereas, for under-critical scenarios, no action may be required to avoid a crash. The criticality of the scenario depends on various parameters e.g. speeds, distances, road/tire parameters, etc. In this paper, we propose a definition of criticality metric and identify the parameters such that a scenario becomes critical.
Technical Paper

Multiple Heat Exchangers for Automotive Systems - A Design Tool

2022-03-29
2022-01-0180
A single radiator cooling system architecture has been widely applied in ground vehicles for safe equipment (e.g., engine block, electronics, and motors) temperature control. The introduction of multiple smaller heat exchangers provides additional energy management features and alternate pathways for continued operation in case of critical subsystem failure. Although cooling performance is often designed for maximum thermal loads, systems typically operate at a fraction of the peak values for most of their life cycle. In this project, a two-radiator configuration with variable flow rates and valve positions has been mathematically modelled and experimentally validated to study its performance feasibility. A multi-node resistance-capacitance thermal model was derived using the ε−NTU approach with accompanying convective and conductive heat transfer pathways within the system.
Technical Paper

An Integrated Energy Management and Control Framework for Hybrid Military Vehicles based on Situational Awareness and Dynamic Reconfiguration

2022-03-29
2022-01-0349
As powertrain hybridization technologies are becoming popular, their application for heavy-duty military vehicles is drawing attention. An intelligent design and operation of the energy management system (EMS) is important to ensure that hybrid military vehicles can operate efficiently, simultaneously maximize fuel economy and minimize monetary cost, while successfully completing mission tasks. Furthermore, an integrated EMS framework is vital to ensure a functional vehicle power system (VPS) to survive through critical missions in a highly stochastic environment, when needed. This calls for situational awareness and dynamic system reconfiguration capabilities on-board of the military vehicle. This paper presents a new energy management and control (EMC) framework based on holistic situational awareness (SA) and dynamic reconfiguration of the VPS.
Technical Paper

Actively Articulated Wheeled Architectures for Autonomous Ground Vehicles - Opportunities and Challenges

2023-04-11
2023-01-0109
Traditional ground vehicle architectures comprise of a chassis connected via passive, semi-active, or active suspension systems to multiple ground wheels. Current design-optimizations of vehicle architectures for on-road applications have diminished their mobility and maneuverability in off-road settings. Autonomous Ground Vehicles (AGV) traversing off-road environments face numerous challenges concerning terrain roughness, soil hardness, uneven obstacle-filled terrain, and varying traction conditions. Numerous Active Articulated-Wheeled (AAW) vehicle architectures have emerged to permit AGVs to adapt to variable terrain conditions in various off-road application arenas (off-road, construction, mining, and space robotics). However, a comprehensive framework of AAW platforms for exploring various facets of system architecture/design, analysis (kinematics/dynamics), and control (motions/forces) remains challenging.
Technical Paper

Safety Verification and Navigation for Autonomous Vehicles Based on Signal Temporal Logic Constraints

2023-04-11
2023-01-0113
The software architecture behind modern autonomous vehicles (AV) is becoming more complex steadily. Safety verification is now an imminent task prior to the large-scale deployment of such convoluted models. For safety-critical tasks in navigation, it becomes imperative to perform a verification procedure on the trajectories proposed by the planning algorithm prior to deployment. Signal Temporal Logic (STL) constraints can dictate the safety requirements for an AV. A combination of STL constraints is called a specification. A key difference between STL and other logic constraints is that STL allows us to work on continuous signals. We verify the satisfaction of the STL specifications by calculating the robustness value for each signal within the specification. Higher robustness values indicate a safer system. Model Predictive Control (MPC) is one of the most widely used methods to control the navigation of an AV, with an underlying set of state and input constraints.
Technical Paper

A First Look at Android Automotive Privacy

2023-04-11
2023-01-0037
Android Automotive OS (AAOS) has been gaining popularity in recent years, with several OEMs across the world already deploying it or planning to in the near future. Besides the benefit of a well-known, customizable and secure operating system for OEMs, AAOS allows third-party app developers to offer their apps on vehicles of several manufacturers at the same time. Currently, there are 55 apps for AAOS that can be categorized as media, navigation or point-of-interest apps. Specifically the latter two categories allow the third-parties to collect certain sensor data directly from the vehicle. Furthermore, the latest version of AAOS also allows the OEM to configure and collect In-Vehicle Infotainment (IVI) and vehicle data (called OEM telemetry). However, increasing connectivity and integration with the in-vehicle network comes at the expense of user privacy. Previous works have shown that vehicular sensor data often contains personally identifiable information (PII).
Technical Paper

Handling Deviation for Autonomous Vehicles after Learning from Small Dataset

2018-04-03
2018-01-1091
Learning only from a small set of examples remains a huge challenge in machine learning. Despite recent breakthroughs in the applications of neural networks, the applicability of these techniques has been limited by the requirement for large amounts of training data. What’s more, the standard supervised machine learning method does not provide a satisfactory solution for learning new concepts from little data. However, the ability to learn enough information from few samples has been demonstrated in humans. This suggests that humans may make use of prior knowledge of a previously learned model when learning new ones on a small amount of training examples. In the area of autonomous driving, the model learns to drive the vehicle with training data from humans, and most machine learning based control algorithms require training on very large datasets. Collecting and constructing training data set takes a huge amount of time and needs specific knowledge to gather relevant information.
Technical Paper

The Ingress and Egress Strategies of Wheelchair Users Transferring Into and Out of Two Sedans

2018-04-03
2018-01-1321
The ability to independently transfer into and out of a vehicle is essential for many wheelchair users to achieve driving independence. The purpose of the current study is to build upon the previous exploratory study that investigated the transfer strategies of wheelchair users by observing YouTube videos. This observational study videotaped five wheelchair users transferring from their wheelchairs into two research vehicles, a small and mid-size sedan that were equipped with a 50mm grid. The goal of this study was to use these videos and vehicle grids to precisely identify ingress and egress motions as well as “touch points” in a controlled setting with a small sample of five male wheelchair users. Using the videos from multiple different camera perspectives, the participants’ ingress and egress transfers were coded, documenting the touch points and step-by-step action sequences.
Technical Paper

Modeling and Learning of Object Placing Tasks from Human Demonstrations in Smart Manufacturing

2019-04-02
2019-01-0700
In this paper, we present a framework for the robot to learn how to place objects to a workpiece by learning from humans in smart manufacturing. In the proposed framework, the rational scene dictionary (RSD) corresponding to the keyframes of task (KFT) are used to identify the general object-action-location relationships. The Generalized Voronoi Diagrams (GVD) based contour is used to determine the relative position and orientation between the object and the corresponding workpiece at the final state. In the learning phase, we keep tracking the image segments in the human demonstration. For the moment when a spatial relation of some segments are changed in a discontinuous way, the state changes are recorded by the RSD. KFT is abstracted after traversing and searching in RSD, while the relative position and orientation of the object and the corresponding mount are presented by GVD-based contours for the keyframes.
Technical Paper

Trust-Based Control and Scheduling for UGV Platoon under Cyber Attacks

2019-04-02
2019-01-1077
Unmanned ground vehicles (UGVs) may encounter difficulties accommodating environmental uncertainties and system degradations during harsh conditions. However, human experience and onboard intelligence can may help mitigate such cases. Unfortunately, human operators have cognition limits when directly supervising multiple UGVs. Ideally, an automated decision aid can be designed that empowers the human operator to supervise the UGVs. In this paper, we consider a connected UGV platoon under cyber attacks that may disrupt safety and degrade performance. An observer-based resilient control strategy is designed to mitigate the effects of vehicle-to-vehicle (V2V) cyber attacks. In addition, each UGV generates both internal and external evaluations based on the platoons performance metrics. A cloud-based trust-based information management system collects these evaluations to detect abnormal UGV platoon behaviors.
Technical Paper

Prediction of Human Actions in Assembly Process by a Spatial-Temporal End-to-End Learning Model

2019-04-02
2019-01-0509
It’s important to predict human actions in the industry assembly process. Foreseeing future actions before they happened is an essential part for flexible human-robot collaboration and crucial to safety issues. Vision-based human action prediction from videos provides intuitive and adequate knowledge for many complex applications. This problem can be interpreted as deducing the next action of people from a short video clip. The history information needs to be considered to learn these relations among time steps for predicting the future steps. However, it is difficult to extract the history information and use it to infer the future situation with traditional methods. In this scenario, a model is needed to handle the spatial and temporal details stored in the past human motions and construct the future action based on limited accessible human demonstrations.
Technical Paper

A Functional Decomposition Approach for Feature-Based Reference Architecture Modeling

2021-04-06
2021-01-0259
Variant modeling techniques have been developed to allow systems engineers to model multiple similar variants in a product line as a single variant model. In this paper, we expand on this past work to explore the extent to which variant modeling in SysML can be applied to a broad range of dissimilar systems, covering the entire domain of ground vehicles, in single reference architecture model. Traditionally, a system’s structure is decomposed into subsystems and components. However, this method is found to be ineffective when modeling variants that are functionally similar but structurally different. We propose to address this challenge by first decomposing the system not only by subsystem but also by high-level function. This pattern is particularly useful for situations where two variants perform the same function, but one variant performs the function using one subsystem, whereas the other variant performs the same function using one or more different subsystems.
Journal Article

Conceptual Development of Automotive Forward Lighting System Using White Light Emitting Diodes

2009-04-20
2009-01-0593
This paper focuses on redesigning the headlamp subsystem functional architecture. The design involves meeting three major functional requirements: Achieving the lumen requirements according to Economic Commission for Europe (ECE) 324 regulations, Meeting the illumination pattern, and Maintaining the Light Emitting Diode’s (LED) junction temperature at 90°C. White LEDs are considered in the design to satisfy the functional requirements due to their high lumen efficacy, compact size, and long life. These benefits, when compared to existing headlight systems benchmarked, present enough potential to warrant further conceptual virtual prototyping. The prototyping focused on solutions that allowed control of sizing and numbering of LEDs, illumination pattern limits, and temperature to achieve the multiple functions a dynamic headlight system. A primary challenge in this design is to maintain the LED’s junction temperature within a recommended operational range.
Journal Article

A Systems Approach in Developing an Ultralightweight Outside Mounted Rearview Mirror Using Discontinuous Fiber Reinforced Thermoplastics

2019-04-02
2019-01-1124
Fuel efficiency improvement in automobiles has been a topic of great interest over the past few years, especially with the introduction of the new CAFE 2025 standards. Although there are multiple ways of improving the fuel efficiency of an automobile, lightweighting is one of the most common approaches taken by many automotive manufacturers. Lightweighting is even more significant in electric vehicles as it directly affects the range of the vehicle. Amidst this context of lightweighting, the use of composite materials as alternatives to metals has been proven in the past to help achieve substantial weight reduction. The focus of using composites for weight reduction has however been typically limited to major structural components, such as BiW and closures, due to high material costs. Secondary structural components which contribute approximately 30% of the vehicle weight are usually neglected by these weight reduction studies.
X