Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

IIoT-Enabled Production System for Composite Intensive Vehicle Manufacturing

2017-03-28
2017-01-0290
The advancements in automation, big data computing and high bandwidth networking has expedited the realization of Industrial Internet of Things (IIoT). IIoT has made inroads into many sectors including automotive, semiconductors, electronics, etc. Particularly, it has created numerous opportunities in the automotive manufacturing sector to realize the new aura of platform concepts such as smart material flow control. This paper provides a thought provoking application of IIoT in automotive composites body shop. By creating a digital twin for every physical part, we no longer need to adhere to the conventional manufacturing processes and layouts, thus opening up new opportunities in terms of equipment and space utilization. The century-old philosophy of the assembly line might not be the best layout for vehicle manufacturing, thus proposing a novel assembly grid layout inspired from a colony of ants working to accomplish a common goal.
Technical Paper

Engine-in-the-Loop Study of a Hierarchical Predictive Online Controller for Connected and Automated Heavy-Duty Vehicles

2020-04-14
2020-01-0592
This paper presents a cohesive set of engine-in-the-loop (EIL) studies examining the use of hierarchical model-predictive control for fuel consumption minimization in a class-8 heavy-duty truck intended to be equipped with Level-1 connectivity/automation. This work is motivated by the potential of connected/automated vehicle technologies to reduce fuel consumption in both urban/suburban and highway scenarios. The authors begin by presenting a hierarchical model-predictive control scheme that optimizes multiple chassis and powertrain functionalities for fuel consumption. These functionalities include: vehicle routing, arrival/departure at signalized intersections, speed trajectory optimization, platooning, predictive optimal gear shifting, and engine demand torque shaping. The primary optimization goal is to minimize fuel consumption, but the hierarchical controller explicitly accounts for other key objectives/constraints, including operator comfort and safe inter-vehicle spacing.
Technical Paper

Capability-Driven Adaptive Task Distribution for Flexible Multi-Human-Multi-Robot (MH-MR) Manufacturing Systems

2020-04-14
2020-01-1303
Collaborative robots are more and more used in smart manufacturing because of their capability to work beside and collaborate with human workers. With the deployment of these robots, manufacturing tasks are more inclined to be accomplished by multiple humans and multiple robots (MH-MR) through teaming effort. In such MH-MR collaboration scenarios, the task distribution among the multiple humans and multiple robots is very critical to efficiency. It is also more challenging due to the heterogeneity of different agents. Existing approaches in task distribution among multiple agents mostly consider humans with assumed or known capabilities. However human capabilities are always changing due to various factors, which may lead to suboptimal efficiency. Although some researches have studied several human factors in manufacturing and applied them to adjust the robot task and behaviors.
Technical Paper

An Online Degradation Forecasting and Abatement Framework for Hybrid Electric Vehicles

2021-04-06
2021-01-0161
The increasing electrification of vehicles raises system reliability concerns as the electrical and electronic components deteriorate faster after an event. In addition, the traditional method of scheduled maintenance is not efficient for managing a fleet of vehicles; because, the degradation processes are distinct in different vehicles. Therefore, integrating an online degradation forecasting and abatement module into a vehicle that is able to assess the vehicle status and predict the degradation process to take timely appropriate actions to reach satisfactory reliability and long-term goals, is valuable. Quantifying uncertainty is one of the main challenges of degradation forecasting; because, the degradation process of a vehicular system is distinct. This paper proposes an online degradation forecasting framework to predict the degradation processes to reallocate energy sources in the system, obtaining long-term goals while adhering to the reliability requirements.
Journal Article

Enabling Robust Communication Among Military Ground Vehicles Using Multi-Connectivity

2023-04-11
2023-01-0110
Vehicles-to-Everything or V2X communications provide attractive advantages in achieving reliable and high-performance connectivity amongst ground and aerial military vehicles. The 5G New Radio (NR) based cellular-V2X (C-V2X) technology, can support wide coverage areas with higher data rates and lower latencies needed for demanding military applications ranging from real-time sensing to navigation of autonomous military ground vehicles. Millimeter wave technology (mmWave) is critical to meet such throughput and latency requirements. However, mmWave links have a low transmission range and are often subject to blockages due to factors like weather, terrain, etc. that make them unreliable. Multi-connectivity with packet duplication can be used to enhance the reliability and latency by transmitting concurrently over independent links between a mobile device and multiple base stations.
Technical Paper

Fuzzing CAN vs. ROS: An Analysis of Single-Component vs. Dual-Component Fuzzing of Automotive Systems

2024-04-09
2024-01-2795
Robust communications are crucial for autonomous military fleets. Ground vehicles function as mobile local area networks utilizing Controller Area Network (CAN) backbones. Fleet coordination between autonomous platforms relies on the Robot Operating System (ROS) publish/subscribe robotic middleware for effective operation. To bridge communications between the CAN and ROS network segments, the CAN2ROS bridge software supports bidirectional data flow with message mapping and node translation. Fuzzing, a software testing technique, involves injecting randomized data inputs into the target system. This method plays a pivotal role in identifying vulnerabilities. It has proven effective in discovering vulnerabilities in online systems, such as the integrated CAN/ROS system. In our study, we consider ROS implementing zero-trust access control policies, running on a Gazebo test-bed connected to a CAN bus.
X