Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

In-Use Emissions from Non-road Equipment for EPA Emissions Inventory Modeling (MOVES)

2010-10-05
2010-01-1952
Because of U.S. EPA regulatory actions and the National Academies National Research Council suggestions for improvements in the U.S. EPA emissions inventory methods, the U.S. EPA' Office of Transportation and Air Quality (OTAQ) has made a concerted effort to develop instrumentation that can measure criteria pollutant emissions during the operation of on-road and off-road vehicles. These instruments are now being used in applications ranging from snowmobiles to on-road passenger cars to trans-Pacific container ships. For the betterment of emissions inventory estimation these on-vehicle instruments have recently been employed to measure time resolved (1 hz) in-use gaseous emissions (CO₂, CO, THC, NO ) and particulate matter mass (with teflon membrane filter) emissions from 29 non-road construction vehicles (model years ranging from 1993 to 2007) over a three year period in various counties in Iowa, Missouri, and Kansas.
Journal Article

Design and Modeling of a Novel Internal Combustion Engine with Direct Hydraulic Power Take-off

2013-04-08
2013-01-1733
This paper introduces a Hydraulic Linear Engine (HLE) concept and describes a model to simulate instantaneous engine behavior. The United States Environmental Protection Agency has developed an HLE prototype as an evolution of their previous six-cylinder, four-stroke, free-piston engine (FPE) hardware. The HLE design extracts work hydraulically, in a fashion identical to the initial FPE, and is intended for use in a series hydraulic hybrid vehicle. Unlike the FPE, however, the HLE utilizes a crank for improved timing control and increased robustness. Preliminary experimental results show significant speed fluctuations and cylinder imbalance that require careful controls design. This paper also introduces a model of the HLE that exhibits similar behavior, making it an indispensible tool for controls design. Further, the model's behavior is evaluated over a range of operating conditions currently unobtainable by the experimental setup.
Journal Article

Emissions of PCDD/Fs, PCBs, and PAHs from a Modern Diesel Engine Equipped with Selective Catalytic Reduction Filters

2013-04-08
2013-01-1778
Exhaust emissions of seventeen 2,3,7,8-substituted chlorinated dibenzo-p-dioxin/furan (CDD/F) congeners, tetra-octa CDD/F homologues, twelve WHO 2005 chlorinated biphenyls (CB) congeners, mono-nona CB homologues, and nineteen polycyclic aromatic hydrocarbons (PAHs) from a model year 2008 Cummins ISB engine equipped with aftertreatment including a diesel oxidation catalyst (DOC) and wall flow copper or iron urea selective catalytic reduction filter (SCRF) were investigated. These systems differ from a traditional flow through urea selective catalytic reduction (SCR) catalyst because they place copper or iron catalyst sites in close proximity to filter-trapped particulate matter. These conditions could favor de novo synthesis of dioxins and furans. The results were compared to previously published results of modern diesel engines equipped with a DOC, catalyzed diesel particulate filter (CDPF) and flow through urea SCR catalyst.
Journal Article

Emissions Performance and In-Use Durability of Retrofit After-Treatment Technologies

2014-09-30
2014-01-2347
In-use testing of diesel emission control technologies is an integral component of EPA's verification program. Device manufacturers are required to complete in-use testing once 500 units have been sold. Additionally, EPA conducts test programs on randomly selected retrofit devices from installations completed with grants by the National Clean Diesel Campaign. In this test program, EPA identified and recovered a variety of retrofit devices, including diesel particulate filters (DPFs) and diesel oxidation catalysts (DOCs), installed on heavy-duty diesel vehicles (on-highway and nonroad). All of the devices were tested at Southwest Research Institute in San Antonio, Texas. This study's goal was to evaluate the durability, defined here as emissions performance as a function of time, of retrofit technologies aged in real-world applications. A variety of operating and emissions criteria were measured to characterize the overall performance of the retrofit devices on an engine dynamometer.
Journal Article

In-Situ Emissions Performance of EPA2010-Compliant On-Highway Heavy-Duty Diesel Engines

2013-09-24
2013-01-2430
Implementation of EPA's heavy-duty engine NOx standard of 0.20 g/bhp-hr has resulted in the introduction of a new generation of emission control systems for on-highway heavy-duty diesel engines. These new control systems are predominantly based around aftertreatment systems utilizing urea-based selective catalytic reduction (SCR) techniques, with only one manufacturer relying solely on in-cylinder NOx emission reduction techniques. As with any new technology, EPA is interested in evaluating whether these systems are delivering the expected emissions reductions under real-world conditions and where areas for improvement may lie. To accomplish these goals, an in-situ gaseous emissions measurement study was conducted using portable emissions measurement devices. The first stage of this study, and subject of this paper, focused on engines typically used in line-haul trucking applications (12-15L displacement).
Journal Article

Chassis Dynamometer as a Development Platform for Vehicle Hardware In-the-Loop “VHiL”

2013-05-15
2013-01-9018
This manuscript provides a review of different types and categorization of the chassis dynamometer systems. The review classifies the chassis dynamometers based on the configuration, type of rollers and the application type. Additionally the manuscript discusses several application examples of the chassis dynamometer including: performance and endurance mileage accumulation tests, fuel efficiency and exhaust emissions, noise, vibration and harshness testing (NVH). Different types of the vehicle attachment system in the dynamometer cell and its influences on the driving force characteristics and the vehicle acoustic signature is also discussed. The text also highlights the impact of the use of the chassis dynamometer as a development platform and its impact on the development process. Examples of using chassis dynamometer as a development platform using Vehicle Hardware In-the-Loop (VHiL) approach including drivability assessment and transmission calibrations are presented.
Journal Article

Vehicle Component Benchmarking Using a Chassis Dynamometer

2015-04-14
2015-01-0589
The benchmarking study described in this paper uses data from chassis dynamometer testing to determine the efficiency and operation of vehicle driveline components. A robust test procedure was created that can be followed with no a priori knowledge of component performance, nor additional instrumentation installed in the vehicle. To develop the procedure, a 2013 Chevrolet Malibu was tested on a chassis dynamometer. Dynamometer data, emissions data, and data from the vehicle controller area network (CAN) bus were used to construct efficiency maps for the engine and transmission. These maps were compared to maps of the same components produced from standalone component benchmarking, resulting in a good match between results from in-vehicle and standalone testing. The benchmarking methodology was extended to a 2013 Mercedes E350 diesel vehicle. Dynamometer, emissions, and CAN data were used to construct efficiency maps and operation strategies for the engine and transmission.
Technical Paper

Effect of North American Certification Test Fuels on Emissions from On-Road Motorcycles

2021-09-21
2021-01-1225
Chassis dynamometer tests were conducted on three Class III on-highway motorcycles produced for the North American market and equipped with advanced emission control technologies in order to inform emissions inventories and compare the impacts of existing Tier 2 (E0) fuel with more market representative Tier 3 and LEV III certification fuels with 10% ethanol. For this study, the motorcycles were tested over the US Federal Test Procedure (FTP) and the World Motorcycle Test Cycle (WMTC) certification test cycles as well as a sample of real-world motorcycle driving informally referred to as the Real World Driving Cycle (RWDC). The primary interest was to understand the emissions changes of the selected motorcycles with the use of certification fuels containing 10% ethanol compared to 0% ethanol over the three test cycles.
Technical Paper

Driver Drowsiness Behavior Detection and Analysis Using Vision-Based Multimodal Features for Driving Safety

2020-04-14
2020-01-1211
Driving inattention caused by drowsiness has been a significant reason for vehicle crash accidents, and there is a critical need to augment driving safety by monitoring driver drowsiness behaviors. For real-time drowsy driving awareness, we propose a vision-based driver drowsiness monitoring system (DDMS) for driver drowsiness behavior recognition and analysis. First, an infrared camera is deployed in-vehicle to capture the driver’s facial and head information in naturalistic driving scenarios, in which the driver may or may not wear glasses or sunglasses. Second, we propose and design a multi-modal features representation approach based on facial landmarks, and head pose which is retrieved in a convolutional neural network (CNN) regression model. Finally, an extreme learning machine (ELM) model is proposed to fuse the facial landmark, recognition model and pose orientation for drowsiness detection. The DDMS gives promptly warning to the driver once a drowsiness event is detected.
Technical Paper

Benchmarking a 2018 Toyota Camry UB80E Eight-Speed Automatic Transmission

2020-04-14
2020-01-1286
As part of the U.S. Environmental Protection Agency’s (EPA’s) continuing assessment of advanced light-duty automotive technologies in support of regulatory and compliance programs, a 2018 Toyota Camry front wheel drive eight-speed automatic transmission was benchmarked. The benchmarking data were used as inputs to EPA’s Advanced Light-duty Powertrain and Hybrid Analysis (ALPHA) vehicle simulation model to estimate GHG emissions from light-duty vehicles. ALPHA requires both detailed engine fuel consumption maps and transmission torque loss maps. EPA’s National Vehicle and Fuels Emissions Laboratory has developed a streamlined, cost-effective in-house method of transmission testing, capable of gathering a dataset sufficient to characterize transmissions within ALPHA. This testing methodology targets the range of transmission operation observed during vehicle testing over EPA’s city and highway drive cycles.
Technical Paper

Evaluating the Performance of a Conventional and Hybrid Bus Operating on Diesel and B20 Fuel for Emissions and Fuel Economy

2020-04-14
2020-01-1351
With ongoing concerns about the elevated levels of ambient air pollution in urban areas and the contribution from heavy-duty diesel vehicles, hybrid electric vehicles are considered as a potential solution as they are perceived to be more fuel efficient and less polluting than their conventional engine counterparts. However, recent studies have shown that real-world emissions may be substantially higher than those measured in the laboratory, mainly due to operating conditions that are not fully accounted for in dynamometer test cycles. At the U.S. EPA National Fuel and Vehicle Emissions Laboratory (NVFEL) the in-use criteria emissions and energy efficiency of heavy-duty class 8 vehicles (up to 36280 kg) can be evaluated under controlled conditions in the heavy-duty chassis dynamometer test.
Journal Article

Design and Demonstration of EPA's Integrated Drive Module for Commercial Series Hydraulic Hybrid Trucks and Buses

2015-09-29
2015-01-2850
The United States Environmental Protection Agency's (EPA) National Center for Advanced Technology (NCAT), located at its National Vehicle and Fuel Emissions Laboratory in Ann Arbor, Michigan, has been a global leader in development and demonstration of low-greenhouse gas emitting, highly fuel efficient series hydraulic hybrid drivetrain technologies. Advances in these exciting new technologies have stimulated industry to begin manufacturing hydraulic hybrids for both commercial truck and non-road equipment markets. Development activities are continuing for other markets, including light-duty vehicles. Given the commercial emergence of these low-greenhouse gas emitting series hydraulic hybrids, EPA has passed the leadership for further development to industry.
Journal Article

Development and Testing of an Automatic Transmission Shift Schedule Algorithm for Vehicle Simulation

2015-04-14
2015-01-1142
The Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) tool was created by EPA to estimate greenhouse gas (GHG) emissions from light-duty (LD) vehicles [1]. ALPHA is a physics-based, forward-looking, full vehicle computer simulation capable of analyzing various vehicle types combined with different powertrain technologies. The software tool is a MATLAB/Simulink based desktop application. In order to model the behavior of current and future vehicles, an algorithm was developed to dynamically generate transmission shift logic from a set of user-defined parameters, a cost function (e.g., engine fuel consumption) and vehicle performance during simulation. This paper presents ALPHA's shift logic algorithm and compares its predicted shift points to actual shift points from a mid-size light-duty vehicle and to the shift points predicted using a static table-based shift logic as calibrated to the same vehicle during benchmark testing.
Journal Article

Assessment of Cooled Low Pressure EGR in a Turbocharged Direct Injection Gasoline Engine

2015-04-14
2015-01-1253
The use of Low Pressure - Exhaust Gas Recirculation (EGR) is intended to allow displacement reduction in turbocharged gasoline engines and improve fuel economy. Low Pressure EGR designs have an advantage over High Pressure configurations since they interfere less with turbocharger efficiency and improve the uniformity of air-EGR mixing in the engine. In this research, Low Pressure (LP) cooled EGR is evaluated on a turbocharged direct injection gasoline engine with variable valve timing using both simulation and experimental results. First, a model-based calibration study is conducted using simulation tools to identify fuel efficiency gains of LP EGR over the base calibration. The main sources of the efficiency improvement are then quantified individually, focusing on part-load de-throttling of the engine, heat loss reduction, knock mitigation as well as decreased high-load fuel enrichment through exhaust temperature reduction.
Journal Article

Characterizing Factors Influencing SI Engine Transient Fuel Consumption for Vehicle Simulation in ALPHA

2017-03-28
2017-01-0533
The U.S. Environmental Protection Agency’s (EPA’s) Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) tool was created to estimate greenhouse gas (GHG) emissions from light-duty vehicles. ALPHA is a physics-based, forward-looking, full vehicle computer simulation capable of analyzing various vehicle types with different powertrain technologies, showing realistic vehicle behavior, and auditing of all energy flows in the model. In preparation for the midterm evaluation (MTE) of the 2017-2025 light-duty GHG emissions rule, ALPHA has been refined and revalidated using newly acquired data from model year 2013-2016 engines and vehicles. The robustness of EPA’s vehicle and engine testing for the MTE coupled with further validation of the ALPHA model has highlighted some areas where additional data can be used to add fidelity to the engine model within ALPHA.
Journal Article

A Nonlinear Model Predictive Control Strategy with a Disturbance Observer for Spark Ignition Engines with External EGR

2017-03-28
2017-01-0608
This research proposes a control system for Spark Ignition (SI) engines with external Exhaust Gas Recirculation (EGR) based on model predictive control and a disturbance observer. The proposed Economic Nonlinear Model Predictive Controller (E-NMPC) tries to minimize fuel consumption for a number of engine cycles into the future given an Indicated Mean Effective Pressure (IMEP) tracking reference and abnormal combustion constraints like knock and combustion variability. A nonlinear optimization problem is formulated and solved in real time using Sequential Quadratic Programming (SQP) to obtain the desired control actuator set-points. An Extended Kalman Filter (EKF) based observer is applied to estimate engine states, combining both air path and cylinder dynamics. The EKF engine state(s) observer is augmented with disturbance estimation to account for modeling errors and/or sensor/actuator offset.
Journal Article

Control Allocation for Multi-Axle Hub Motor Driven Land Vehicles

2016-04-05
2016-01-1670
This paper outlines a real-time hierarchical control allocation algorithm for multi-axle land vehicles with independent hub motor wheel drives. At the top level, the driver’s input such as pedal position or steering wheel position are interpreted into desired global state responses based on a reference model. Then, a locally linearized rigid body model is used to design a linear quadratic regulator that generates the desired global control efforts, i.e., the total tire forces and moments required track the desired state responses. At the lower level, an optimal control allocation algorithm coordinates the motor torques in such a manner that the forces generated at tire-road contacts produce the desired global control efforts under some physical constraints of the actuation and the tire/wheel dynamics. The performance of the proposed control system design is verified via simulation analysis of a 3-axle heavy vehicle with independent hub-motor drives.
Journal Article

Impacts of Adding Photovoltaic Solar System On-Board to Internal Combustion Engine Vehicles Towards Meeting 2025 Fuel Economy CAFE Standards

2016-04-05
2016-01-1165
The challenge of meeting the Corporate Average Fuel Economy (CAFE) standards of 2025 has led to major developments in the transportation sector, among which is the attempt to utilize clean energy sources. To date, use of solar energy as an auxiliary source of on-board fuel has not been extensively investigated. This paper is the first study at undertaking a comprehensive analysis of using solar energy on-board by means of photovoltaic (PV) technologies to enhance automotive fuel economies, extend driving ranges, reduce greenhouse gas (GHG) emissions, and ensure better economic value of internal combustion engine (ICE) -based vehicles to meet CAFE standards though 2025. This paper details and compares various aspects of hybrid solar electric vehicles with conventional ICE vehicles.
Technical Paper

Single vs Double Stage Partial Flow Dilution System: Automobile PM Emission Measurement

2020-04-14
2020-01-0366
The US Code of Federal Regulations (CFR) Title 40 Part 1065 and 1066 require gravimetric determination of automobile Particulate Matter (PM) collected onto filter media from the diluted exhaust. PM is traditionally collected under simulated driving conditions in a laboratory from a full flow Constant Volume Sampler (CVS) system, where the total engine exhaust is diluted by HEPA filtered air. This conventional sampling and measurement practice is facing challenges in accurately quantifying PM at the upcoming 2025-2028 CARB LEVIII 1 mg/mi PM emissions standards. On the other hand, sampling a large amount of PM emitted from large size high power engines introduces additional challenges. Applying flow weighting, adjusting the Dilution Ratio (DR) and Filter Face Velocity (FFV) are proposed options to overcome these challenges.
Technical Paper

Motor Vehicle Emission Control Quality Monitoring for On-Road Driving: Dynamic Signature Recognition of NOx & NH3 Emissions

2020-04-14
2020-01-0372
Motor vehicle emission testing during on-road driving is important to assess a vehicle’s exhaust emission control design, its compliance with Federal regulations and its impact on air quality. The U.S. Environmental Protection Agency (EPA) has been developing new approaches to screen the characteristics of vehicle dynamic emission control behaviors (its operating signature) while driving both on-road and on-dynamometer. The so-called “signature device” used for this testing is equipped with an O2/NOx sensor, thermocouple and GPS to record dynamic exhaust NOx concentration, air fuel ratio-controlled tailpipe lambda (λ), tailpipe temperature and vehicle speed (acceleration). In the early EPA research, signature screening was used to characterize a vehicle’s PCM control behaviors (cause/effect bijectivity), which help distinguish operation in normal control state-space and abnormal state-space.
X