Refine Your Search

Topic

Search Results

Technical Paper

CFD Numerical Simulation Aero-engine Air-Oil Separator

2022-03-08
2022-01-0027
Engine oil systems drive and de-aerate air-oil solutions in a two-phase flow to provide an appropriate amount of oil lubrication and cooling. especially in aero-engine and starter-generator component and system. The oil lubrication systems combine three important functions of the Main Oil Pump (MOP) for lubrication and scavenging: the de-aeration and de-oiling of the air-oil mixture generated in the bearing and gearbox sumps and pumping the oil towards the tank. These are critical functions for the aero-engine and starter-generator. An aero-engine lubrication system along with an integrated pump and separation of gas-liquid mixture has been developed and characterized experimentally to increase Collins Aerospace Engine and Control Systems research and development productivity. This system has also improved engine and starter-generator reliability and system performance.
Technical Paper

Aircraft Systems Qualification Test Definition by Structural Analysis Techniques

2022-10-05
2022-28-0081
Aircraft systems have a stringent requirement governed by the certifying authorities demanding that the system and components are qualified for all the applicable requirements. Conducting qualification tests on all the components in a system for all operational requirements, environmental loads, and the loads for uncertainties such as limit and ultimate cases would consume a significant time in the product design cycle. With improved computational power and with validated higher fidelity models, structural analysis is proving to be a way forward in reducing the product design cycle time. This paper discusses about the structural analysis driven qualification test definition aligning with modes of compliances defined by CS25 / FAR 25 with an objective to minimize and simplify the tests carried out as a step towards certification by analysis.
Technical Paper

Operating the Navigation Database Server from Ground Station

2022-05-26
2022-26-0028
The main aim of operating the navigation database server from ground station (Web/cloud) is to operate a single navigation database server across all aircrafts and navigation database updates can be performed at one place. which will be effective and quick, thus no need to update the navigation database in each flight for every 28 days. UAM refers to a safe and efficient air transportation system that uses transformative new airborne technology, manned and unmanned, to move people and goods in a metropolitan area, operating the navigation data base server from ground station might be the first step towards including the FMS system in urban air mobility (UAM). the proposed system can run as standalone application and provides serveries to all aircrafts from single resource; thus, the system will provide services with low cost.
Technical Paper

Temperature Estimation of Electric Motors of Electric Actuators

2022-05-26
2022-26-0001
In the development of electric actuators, the electric motor to drive the actuator is quite often selected from a set of available motors that have been previously used on other similar programs, or based on legacy experience, or from those that are commercially available seeming to fit for the purpose. Scheduling and budgetary constraints pose a restriction on design and development of a new electric motor specifically for the required application. Generally, these electric motors have minimal weight but deliver maximum output power because of which they tend to heat up rapidly. Such rapid heating can lead to issues such as insulation damage or weakening of the strengths of permanent magnets used in the rotors of permanent magnet induction motors. In such cases, very early in the design phase, it becomes necessary to estimate the temperature rise of the electric motor in a cost effective and rapid way so that the best suitable motor that gives minimal temperature rise is selected.
Technical Paper

Icing Simulation Framework: A Predictive Approach from Nucleation to Runback

2023-06-15
2023-01-1460
This paper provides an overview of the state-of-art multiscale “Icing Simulation Framework” capability developed at Raytheon Technologies Research Center. Specifically, the application of this framework to simulate droplet runback and runback icing will be presented. In summary, this high-fidelity framework tracks the physical mechanisms associated with droplet dynamics, ice nucleation, growth and interaction with the environment (e.g. adhesion, crystal growth, evaporation, sublimation, etc.) across all relevant scales (including nucleation at <10-7m to ~10-6m of coating/environment interaction to 10-2m of the component) which allows a rigorous investigation of how different environmental (e.g. LWC, MVD, pressure, velocity and temperature) and substrate (e.g. coating molecular and macroscopic specifications) characteristics affect the icing behavior.
Technical Paper

Minimum Operational Performance Standards for Weather Radar Ice Crystal Detection Function

2023-06-15
2023-01-1433
The RTCA SC-230 committee began working on minimum operational performance standards (MOPS) for ice crystal detection using weather radar in 2018. The resulting MOPS document will be released in 2023. This paper presents the rationale, summarizes key requirements, and discusses means of validation for an ice crystal detection function incorporated in an airborne weather radar system.
Technical Paper

Optical Ice Detector: Measurement Comparison to Research Probes

2023-06-15
2023-01-1428
The Collins Aerospace Optical Ice Detector is a short-range polarimetric cloud lidar designed to detect and discriminate among all types of icing conditions with the use of a single sensor. Recent flight tests of the Optical Ice Detector (OID) aboard a fully instrumented atmospheric research aircraft have allowed comparisons of measurements made by the OID with those of standard cloud research probes. The tests included some icing conditions appropriate to the most recent updates to the icing regulations. Cloud detection, discrimination of mixed phase, and quantification of cloud liquid water content for a cloud within the realm of Appendix C were all demonstrated. The duration of the tests (eight hours total) has allowed the compilation of data from the OID and cloud probes for a more comprehensive comparison. The OID measurements and those of the research probes agree favorably given the uncertainties inherent in these instruments.
Technical Paper

Development of a Robust Surface Ply for Pneumatic Deicers

2023-06-15
2023-01-1403
The purpose of this paper to is to review the methodology applied by Collins Aerospace to develop, test and qualify a more robust surface ply rubber compound that has demonstrable improvements in durability and performance at sub-freezing temperatures. Using in-service products as a reference, pneumatic deicers in use on regional turboprop applications were selected as a basis for operational characteristics and observed failure modes. Custom test campaigns were developed by Collins to comparatively evaluate key characteristics of the surface ply material including low temperature elasticity, erosion durability, and fluid susceptibility. Collins’ proprietary engineered rubber formulations were individually evaluated and built into fully functional test deicers for component level testing to DO-160G environmental exposure, comparative ice shed performance in Collins’ Icing Wind Tunnel and erosion in Collins’ Rain Erosion Silo.
Journal Article

Digital Data Standards in Aircraft Asset Lifecycle: Current Status and Future Needs

2021-03-02
2021-01-0035
The aerospace ecosystem is a complex system of systems comprising of many stakeholders in exchanging technical, design, development, certification, operational, and maintenance data across the different lifecycle stages of an aircraft from concept, engineering, manufacturing, operations, and maintenance to its disposal. Many standards have been developed to standardize and improve the effectiveness, efficiency, and security of the data transfer processes in the aerospace ecosystem. There are still challenges in data transfer due to the lack of standards in certain areas and lack of awareness and implementation of some standards. G-31 standards committee of SAE International has conducted a study on the available digital data standards in aircraft asset life cycle to understand the current and future landscapes of the needed digital data standards and identify gaps. This technical paper presents the study conducted by the G-31 technical committee.
Research Report

Unsettled Topics on the Use of IVHM in the Active Control Loop

2020-07-01
EPR2020011
The growth in global economies has led to a world that has become much more mobile in the last few decades. The number of enplanements has increased and is expected to continue to do so at an annual average rate of 1.8% through 2039 [1]. Prior to the COVID-19 pandemic, the number of aircraft in service was expected to increase annually to meet the travel demand. Next-generation, more-complex aircraft were scheduled to replace the older aircraft at a pace that still allowed sufficient capacity to meet the increasing demand. The events of 2020 have driven the industry to accelerate retirement of older aircraft while deferring the introduction of new aircraft. While the length of the industry recovery period cannot be predicted, most analysts believe that demand for travel will return once a vaccine is widely available.
Research Report

Unsettled Topics Concerning Adopting Blockchain Technology in Aerospace

2020-10-30
EPR2020021
In the aerospace industry, competition is high and the need to ensure safety and security while managing costs is paramount. Furthermore, stakeholders—who gain the most by working together—do not necessarily trust each other. Now, mix that with changing enterprise technologies, management of historical records, and customized legacy systems. This issue touches all aspects of the aerospace industry, from frequent flyer miles to aircraft maintenance and drives tremendous inefficiency and cost. Technology that augments, rather than replaces, is needed to transform these complex systems into efficient, digital processes. Blockchain technology offers collaborative opportunities for solving some of the data problems that have long challenged the industry. This SAE EDGE™ Research Report by Rhonda D. Walthall examines how blockchain technology could impact the aerospace industry and addresses some of the unsettled concerns surrounding its implementation.
Research Report

Impact of Quantum Computing in Aerospace

2022-06-14
EPR2022014
As the complexity of systems expands with increasing emphasis for digital transformation, the aerospace industry is generating big data to meet customer requirements. The ability to that data to solve challenging problems is limited by many factors, including the capabilities of current classical computing systems. Impact of Quantum Computing in Aerospace discusses how quantum computing systems offer (possibly quadratic to exponentially) greater computational power over classical computers. The power of quantum computing is tremendous and has many potential impacts on the aerospace industry; however, there are also many unsettled topics surrounding the future of the technology. Click here to access the full SAE EDGETM Research Report portfolio.
Technical Paper

Methodology for Performing Submodel Analysis for Random Vibration Problems using Modal Analysis Results

2022-05-26
2022-26-0012
The FE analysis of complex systems with lot of intricate features and fillets modeled in detail would result in a huge FE model size making it difficult to handle. Therefore, to reduce the computation time, defeaturing of such regions are carried out as a common practice and these critical stress concentration regions can be studied using submodeling approach later based on response superimposed from the global models. This method is widely practiced and is quite easy to implement for static and harmonic analysis problems. However, there is no well documented methodology exists for submodeling in the random vibration environment. In case of Random vibration analysis, the cut boundary displacements from Power Spectral Density (PSD) analysis would result in unrealistic stresses.
Journal Article

Checking Compliance of AADL Models with Modeling Guidelines using Resolint

2023-03-07
2023-01-0995
Certification standards for high-assurance systems include objectives for demonstrating compliance of process artifacts such as requirements and code with style guidelines and other standards. With the emergence of model-based development, similar objectives have been specified that apply to models. Demonstration of compliance is often achieved by employing a static analysis linter tool. This paper describes Resolint, an open-source, lightweight linter tool for checking compliance of Architecture Analysis and Design Language (AADL) models with modeling guidelines. AADL enables engineers to describe the key elements of distributed, real-time, embedded system architectures with a sufficiently rigorous semantics. In addition, AADL provides an annex mechanism for extending the base language, enabling new kinds of analyses and tool support. Resolint uses the AADL annex capability to provide a language for specifying style guide rule sets.
Journal Article

Best Practices in Establishing Business Case for Implementing Blockchain Solution in Aerospace

2022-03-08
2022-01-0002
The aircraft asset life cycle processes are rapidly being digitalized. Many novel technologies enabled processes of recording these electronic transactions are being emerged. One such technology for recording electronic transactions securely is Blockchain, defined as distributed ledger technologies which includes enterprise blockchain. Blockchain is not widely used in the aerospace industry due to lack of technical understanding and questions about its benefits. Assessment and establishment of business case for implementing blockchain based solution is needed. The aerospace industry is very conservative when it comes to technology adoption and hence it is difficult to change legacy processes. Additionally, the industry is very fragmented. The technology is advancing at a faster rate and applies across geographies under various regulatory oversight which makes blockchain based solution implementation challenging.
Technical Paper

Opportunities, Challenges and Requirements for Use of Blockchain in Unmanned Aircraft Systems

2023-09-05
2023-01-1504
Unmanned Aircraft Systems (UAS) have been growing over the past few years and will continue to grow at a faster pace in future. UAS faces many challenges in certification, airspace management, operations, supply chain, and maintenance. Blockchain, defined as a distributed ledger technology for the enterprise that features immutability, traceability, automation, data privacy, and security, can help address some of these challenges. However, blockchain also has certain challenges and is still evolving. Hence it is essential to study on how blockchain can help UAS. G-31 technical committee of SAE International responsible for electronic transactions for aerospace has published AIR 7356 [1] entitled Opportunities, Challenges and Requirements for use of Blockchain in Unmanned Aircraft Systems Operating below 400ft above ground level for Commercial Use. This paper is a teaser for AIR 7356 [1] document.
Technical Paper

Considerations for Requirements and Specifications of a Digital Thread in Aircraft Data Life Cycle Management

2024-03-05
2024-01-1946
The aircraft lifecycle involves thousands of transactions and an enormous amount of data being exchanged across the stakeholders in the aircraft ecosystem. This data pertains to various aircraft life cycle stages such as design, manufacturing, certification, operations, maintenance, and disposal of the aircraft. All participants in the aerospace ecosystem want to leverage the data to deliver insight and add value to their customers through existing and new services while protecting their own intellectual property. The exchange of data between stakeholders in the ecosystem is involved and growing exponentially. This necessitates the need for standards on data interoperability to support efficient maintenance, logistics, operations, and design improvements for both commercial and military aircraft ecosystems. A digital thread defines an approach and a system which connects the data flows and represents a holistic view of an asset data across its lifecycle.
Technical Paper

Transforming AADL Models Into SysML 2.0: Insights and Recommendations

2024-03-05
2024-01-1947
In recent years, the increasing complexity of modern aerospace systems has driven the rapid adoption of robust Model-Based Systems Engineering (MBSE). MBSE is a development methodology centered around computational models, which are instrumental in supporting the design and analysis of intricate systems. In this context, the Architecture Analysis and Design Language (AADL) and Systems Modeling Language (SysML) are two prominent modeling languages for specifying and analyzing the structure and behavior of a cyber-physical system. Both languages have their own specific use cases and tool environments and are typically employed to model different aspects of system design. Although multiple software tools are available for transforming models from one language to another, their effectiveness is limited by fundamental differences in the semantics of each language.
Technical Paper

Carbon Nanotube (CNT) Based Electrothermal Ice Protection System Flight Tests

2023-06-15
2023-01-1398
Innovative carbon nanotube (CNT) electrothermal heating technology for ice protection systems is one of the alternatives under development that shall contribute to more efficient and sustainable aircraft. CNT heater technology allows for more rapid heat up rates over legacy metallic electrothermal heaters that utilize resistance wires or metallic foils. This more rapid heat up rate can lead to more energy efficient electrothermal ice protection system designs and is being studied to determine how much the rapid heat up properties of CNT can lead to a minimization of residual ice build-up aft of the heated area. Due to the inherent redundancy of CNT material used, leads to a very robust and damage tolerant heating element. To mature this technology to prepare to implement CNT on an in-service aircraft platform, a multi-staged flight testing effort to prove out the technology on an actual aircraft and in a relevant environment is mandatory.
Journal Article

Experiences of Civil Certification of Multi-Core Processing Systems in Commercial and Military Avionics, Integration Activities, and Analysis

2019-03-19
2019-01-1382
Avionics systems are currently undergoing a transition from single core processor architectures to multi-core processor architectures. This transition enables significant advantages in reduction in size, weight, power (SWaP) and cost. However, avionics hardware and software certification policies and guidance are evolving as research and experience is gained with multi-core processor architectures. The unique challenges of using multi-core processors in certified avionics will be discussed. The requirements for a virtualization platform supporting multiple real-time operating system (RTOS) partitions on a multi-core processor used in safety-critical avionics systems are defined, including the ability to support multiple design assurance levels (DAL) on multiple cores, fault isolation and containment, static configuration as per ARINC 653, role-based development as per DO-297, and robust partitioning to reduce cost of incremental certification.
X