Refine Your Search

Topic

Author

Affiliation

Search Results

Video

BMW i3 - A Battery Electric Vehicle...Right from the Beginning

2012-03-29
What are the requirements of customers in an urban environment? What will sustainable mobility look like in the future? This presentation gives an overview of the integrated approach used by BMW to develop the BMW i3 - a purpose-built battery electric vehicle. Very low driving resistances for such a vehicle concept enable the delivery of both impressive range and driving excitement. A small optional auxiliary power unit offers range security for unexpected situations and opens up BEVs to customers who are willing to buy a BEV but are still hesitant due to range anxiety. Additional electric vehicles sold to the formerly range anxious will create additional electric miles. Presenter Franz Storkenmaier, BMW Group
Journal Article

Functional Safety Compliant ECU Design for Electro-Mechanical Brake (EMB) System

2013-09-30
2013-01-2062
In this paper, we propose a hardware and a software design method considering functional safety for an electro-mechanical brake (EMB) control system which is used as a brake actuator in a brake-by-wire (BBW) system. A BBW system is usually composed of electro-mechanical calipers, a pedal simulator, and a control system. This simple by-wire structure eliminates the majority of bulky hydraulic brake devices such as boosters and master cylinders. The other benefit of a BBW system is its direct and independent response; this leads to enhanced controllability, thus resulting in not only improved basic braking performance but also considerably easier cooperative regenerative braking in hybrid, fuel-cell, and electric cars. The importance of a functional safety based approach to EMB electronic control unit (ECU) design has been emphasized because of its safety critical functions, which are executed with the aid of many electric actuators, sensors, and application software.
Technical Paper

Analysis of Underbody Windnoise Sources on a Production Vehicle using a Lattice Boltzmann Scheme

2007-05-15
2007-01-2400
A computational analysis of underbody windnoise sources on a production automobile at 180 km/h free stream air speed and 0° yaw is presented. Two different underbody geometry configurations were considered for this study. The numerical results have been obtained using the commercial software PowerFLOW. The simulation kernel of this software is based on the numerical scheme known as the Lattice-Boltzmann Method (LBM), combined with a two-equation RNG turbulence model. This scheme accurately captures time-dependent aerodynamic behavior of turbulent flows over complex detailed geometries, including the pressure fluctuations causing wind noise. Comparison of pressure fluctuations levels mapped on a fluid plane below the underbody shows very good correlation between experiment and simulation. Detailed flow analysis was done for both configurations to obtain insight into the transient nature of the flow field in the underbody region.
Technical Paper

Integrating CE-based Applications into the Automotive HMI

2007-04-16
2007-01-0446
Being able to integrate consumer electronics (CE) devices into the automobile is an increasingly important goal. In this paper, we focus on the HMI (human machine interaction) aspects of consumer electronics in the car. We describe the requirements concerning HMI integration of consumer electronics and offer several possible solutions. One of the requirements is minimal driver distraction. A desired property in this context concerns the mental model that the user builds of the service that is to be operated: ideally, this model (i.e., appearance and interaction logic) need not change when integrating the service into the automobile, even though the operating elements differ considerably (e.g., touch screen vs. iDrive commander). A further requirement is posed by the dynamic nature of CE services: often, they are not known at design/deploy time of the HMI software of the automobile.
Technical Paper

Implementing FlexRay on Silicon

2007-04-16
2007-01-1718
FlexRay1 is a high speed, time triggered and fault tolerant communication protocol, which was specified to meet the requirements of safety-critical automotive applications. The achieved maturity of FlexRay encourages the implementation on silicon. The CIC-3102 device is a standalone controller provided by Infineon Technologies. It runs the wide spread E-Ray3 IP from Bosch. A complete communication node for FlexRay requires additional devices for the physical layer and the application part. The CIC-310 can communicate with a host controller via three different interfaces micro link interface MLI, serial synchronous interface SSC, external bus XMU. Its physical layer interface corresponds to the FlexRay specification. The CIC-310 provides features like intelligent move engines to maximize the achievable data rate as well as to minimize the workload of the host. Therefore, the CIC-310 allows a very flexible and efficient way to build and operate FlexRay nodes.
Technical Paper

Advanced Driver Assistance: Chances and Limitations on the Way to Improved Active Safety

2007-04-16
2007-01-1738
Advanced Driver Assistance systems support the driver in his driving tasks. They can be designed to enhance the driver's performance and/or to take over unpleasant tasks from the driver. An important optimization goal is to maintain the driver's activation at a moderate level, avoiding both stress and boredom. Functions requiring a situational interpretation based on the vehicle environment are associated with lower performance reliability than typical stability control systems. Thus, driver assistance systems are designed assuming that drivers will monitor the assistance function while maintaining full control over the vehicle, including the opportunity to override as required. Advanced driver assistance systems have a substantial potential to increase active safety performance of the vehicle, i.e., to mitigate or avoid traffic accidents.
Technical Paper

Contemporary Crash Analysis as a Building Block in Holistic Multidisciplinary Structural Analysis

2008-04-14
2008-01-1127
The trend in the previous years showed that an ideal product is not obtained as a sum of development results of several separated disciplines but rather as a result of a holistic multidisciplinary CAE approach. In the course of the whole component development process it is necessary to consider all functions of an individual component equivalent to their importance in the system as a whole, in order to achieve both a technical and a financial optimum. The predictability and the accuracy of an individual computational method have to be regarded against the background of the entire simulation process. A continuative CAE-standard and a harmonious interaction between the different computational disciplines promise more success than focusing specifically on individual topics and thereby neglecting the “bigger picture”. This awareness provided the basis for a decision to change the entire crash simulation software to ABAQUS.
Technical Paper

Enhancing Navigation Systems with Quality Controlled Traffic Data

2008-04-14
2008-01-0200
As the popularity of vehicle navigation systems rises, incorporating Real Time Traffic Information (RTTI) has been shown to enhance the systems' value by helping drivers avoid traffic delays. As an innovative premium automaker, BMW has developed a testing process to acquire and analyze RTTI data in order to ensure delivery of a high quality service and to enhance the customer experience compared to audible broadcast services. With a methodology to obtain valid and repeatable RTTI data quality measurements, BMW and its service partner, Clear Channel's Total Traffic Network (TTN), can improve its offered service over time, implement corrective measures when appropriate, and confidently ensure the service meets its premium objectives. BMW has partnered with TTN and SoftSolutions GmbH to implement a traffic data quality process and software tools.
Technical Paper

Telematics – The Essential Cornerstone of Global Vehicle and Traffic Safety

2008-10-20
2008-21-0034
Networking of active and passive safety is the fundamental basis for comprehensive vehicle safety. Situation-relevant information relating to driver reactions, vehicle behavior and traffic environment are fed into a crash probability calculator, which continually assesses the current crash risk and intervenes when necessary with appropriate measures to avoid a crash and reduce potential injuries. This provides effective protection not only for vehicle occupants but also for other, vulnerable road users. As this functionality up till now only relates to the vehicle itself, the next logical step is enhancement leading to the ultimate goal in safety performance, telematics. The integration of this embedded, in-vehicle wireless communication system allows Car-to-Car (C2C) and Car-to-Infrastructure (C2I) functionality for, e.g. hazard warning. This is an integral element of the cascaded ContiGuard® protection measures.
Technical Paper

AUTOSAR on the Road

2008-10-20
2008-21-0019
The AUTomotive Open System ARchitecture (AUTOSAR) Development Partnership has published early 2008 the specifications Release 3.0 [1], with a prime focus on the overall architecture, basic software, run time environment, communication stacks and methodology. Heavy developments have taken place in the OEM and supplier community to deliver AUTOSAR loaded cars on the streets starting 2008 [2]. The 2008 achievements have been: Improving the specifications in order to secure the exploitation for body, chassis and powertrain applications Adding major features: safety related functionalities, OBD II and Telematics application interfaces.
Technical Paper

HEV Architectures - Power Electronics Optimization through Collaboration Sub-topic: Inverter Design and Collaboration

2010-10-19
2010-01-2309
As the automotive industry quickly moves towards hybridized and electrified vehicles, the optimal integration of power electronics in these vehicles will have a significant impact not only on the cost, performance, reliability, and durability; but ultimately on customer acceptance and market success of these technologies. If properly executed with the right cost, performance, reliability and durability, then both the industry and the consumer will benefit. It is because of these interdependencies that the pace and scale of success, will hinge on effective collaboration. This collaboration will be built around the convergence of automotive and industrial technology. Where real time embedded controls mixes with high power and voltage levels. The industry has already seen several successful collaborations adapting power electronics to the automotive space in target vehicles.
Technical Paper

Multicore vs Safety

2010-04-12
2010-01-0207
It is the beginning of a new age: multicore technology from the PC desktop market is now also hitting the automotive domain after several years of maturation. New microcontrollers with two or more main processing cores have been announced to provide the next step change in available computing power while keeping costs and power consumption at a reasonable level. These new multicore devices should not be confused with the specialized safety microcontrollers using two redundant cores to detect possible hardware failures which are already available. Nor should they be confused with the heterogeneous multicore solutions employing an additional support core to offload a single main processing core from real-time tasks (e.g. handling peripherals).
Technical Paper

Semiconductor Solutions for Braking Systems: New Partitioning and New Safety Concepts Increase Safety and Reduce System Cost

2004-03-08
2004-01-0251
Braking systems require a high system safety level: New safety concepts need to be implemented by reducing the system complexity. Microcontrollers with special safety functions are available with implemented features, self detecting and compensating different types of faults. Today usually two microcontrollers are used to check each other. Power devices provide microcontroller supplies and drive motors and valves; internally the functions are supervised to avoid incorrect system behaviour due to wrong voltages, currents, missing loads or other malfunctions. Bus interfaces, signal conditioning and interfaces for high voltage signals are integrated into the power system ICs. Latest BIPOLAR-CMOS-DMOS power technologies enable the power semiconductors to integrate logic functions.
Technical Paper

Electronic Throttle Control With Contactless Position Sensor And Smart Power Full-Bridge

2001-03-05
2001-01-0984
Electronic throttle systems are becoming more and more important in today's motor vehicles. These systems consist of: a throttle valve with an electrical actuator and a transmission a position feedback an electronic acceleration pedal an electronic control unit (ECU) a semiconductor h-bridge for driving the motor. The electronic acceleration pedal gives a set point to the ECU. A control signal is generated and moves the motor of the throttle valve with a semiconductor h-bridge to the requested position. The voltage drop of a potentiometer is used here as control feedback signal. The potentiometer in the throttle valve is moved very often and has a rough environment like high temperature and vibrations. Therefore this system has a lot of problems with mechanical attrition and reliability during the whole system lifetime. The accuracy of the position control decreases over time.
Technical Paper

Power Semiconductors for Starter-Alternator Systems

2001-03-05
2001-01-0958
Modern semiconductor devices enable highly efficient conversion of electrical power. Together with the microcontroller, they are the key elements for generation of the alternating currents from the car's DC supply that are necessary to drive high-performance units such as starter-alternators. These allow the combustion engine to crank up in several 100 ms and deliver up to 15 kW of electrical power. Smart driver ICs such as the TLE6280 enable the fast development of the interface between the microcontroller and the power switches. Currents of some 100A can be handled with the new OptiMOS FETs. Their rugged and ultra-low ohmic technology and their innovative packaging concepts, such as Power Modules and Power-Bonded MOSFETs, allow the building of compact and efficient control units.
Technical Paper

Seamless Solutions for LIN

2001-03-05
2001-01-0065
Today's body and convenience applications in general directly control actuators and sensors from a single central electronic control unit (ECU). Future systems will be made of subsystem-clusters communicating via a local Class/A communication bus. This enables modular system design to reduce system complexity. For these types of new distributed applications the LIN bus is currently the most promising communication protocol. To allow a seamless migration from existing centralized to these next generation clustered system developers require software and hardware products for a homogenous and transparent LIN bus communication.
Technical Paper

Next Generation Catalysts are Turbulent:Development of Support and Coating

2004-03-08
2004-01-1488
Future catalyst systems need to be highly efficient in a limited packaging space. This normally leads to a design where the flow distribution, in front of the catalyst, is not perfectly uniform. Measurements on the flow test bench show that the implementation of perforated foils for the corrugated and flat foils has the capability to distribute the flow within the channels in the radial direction so that the maximum of the given catalyst surface is of use, even under very poor uniformity indices. Therefore a remarkable reduction in back pressure is measured. Emission results demonstrate cold start improvement due to reduced heat capacity. The use of LS - structured ( Longitudinal structured ) corrugated foils creates a high turbulence level within the single channels. The substrate lights-up earlier and the maximum conversion efficiency is reached more quickly.
Technical Paper

Automotive Software Development: A Model Based Approach

2002-03-04
2002-01-0875
This article focuses on model based development of electronic control units (ECUs) in the automotive domain. The use of model-based approaches solves requirements for the fast-growing integration of formerly isolated logical functions in complex distributed networks of heavily interacting ECUs. One fundamental property of such an approach is the existence of an adequate modeling notation tailored to the specific needs of the application domain together with a precise definition of its syntax and its semantics. However, although these constituents are necessary, they are not sufficient for guaranteeing an efficient development process of ECU networks. In addition, methodical support which guides the application of the modeling notation must be an integral part of a model-based approach.
Technical Paper

Real-Time Engine Models

2003-03-03
2003-01-1050
Engine management systems in modern motor vehicles are becoming increasingly extensive and complex. The functionality of the control units which are the central components of such systems is determined by the hardware and software. They are the result of a lengthy development and production process. Road testing of control units, together with testing them on the engine test bench, is very time consuming and costly. An alternative is to test control units away from their actual environment, in a virtual context. This involves operating the control unit on a Hardware-in-the-Loop test bench. The control unit's large number of individual and interlinked functions necessitates a structured, reproducible test procedure. These tests can, however, only be conducted once an engine prototype has been completed, as the parameters for the existing conventional models are determined from the data measured on the test bench.
Technical Paper

Future Engine Control Enabling Environment Friendly Vehicle

2011-04-12
2011-01-0697
The aim of this paper is to compile the state of the art of engine control and develop scenarios for improvements in a number of applications of engine control where the pace of technology change is at its most marked. The first application is control of downsized engines with enhancement of combustion using direct injection, variable valve actuation and turbo charging. The second application is electrification of the powertrain with its impact on engine control. Various architectures are explored such as micro, mild, full hybrid and range extenders. The third application is exhaust gas after-treatment, with a focus on the trade-off between engine and after-treatment control. The fourth application is implementation of powertrain control systems, hardware, software, methods, and tools. The paper summarizes several examples where the performance depends on the availability of control systems for automotive applications.
X