Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Characterization of Acid Sites in Ion-exchanged and Solid State-exchanged Zeolites

2001-09-24
2001-01-3571
Brønsted acidity of solution ion-exchanged and solid-state exchanged zeolites was compared for NaY, BaY, CaY, NaX, and CaX zeolites. These materials were chosen because they all exhibit catalytic activity in SCR of NOx in combination with a non-thermal plasma. Brønsted acidity was characterized qualitatively with retinol as an indicator dye. Our results show that the solid-state exchange using a chloride salt creates zeolites with lower acidity than zeolites obtained by conventional solution ion-exchange. NO2 adsorption was also found to create a significant quantity of acid sites at room temperature and a slight increase in acidity at 200°C. We speculate that the acid sites created by NO2 adsorption, because of their vicinity to metal cation sites in the zeolite, may lead to preferential reactions that lead to NOx reduction. BaY made by solution ion-exchange and BaY made by solid-state exchange using a chloride salt were tested for NOx reduction in a plasma-catalyst reactor system.
Technical Paper

Plasma-Enhanced Catalytic Reduction of NOx in Simulated Lean Exhaust

2000-10-16
2000-01-2961
NOx reduction efficiency in simulated lean exhaust conditions has been examined for three proprietary catalyst materials using a non-thermal plasma discharge as a pretreatment stage to the catalyst. Using propene as the reducing agent for selective catalytic reduction, 74% reduction of NOx has been observed in the presence of 20 ppm SO2. For sulfur-free simulated exhaust, 84% NOx reduction has been obtained. Results show that the impact of sulfur on the samples examined can vary widely from virtually no effect (< 5%) to more than 20% loss in activity depending on the catalyst. Any loss due to sulfur poisoning appears to be irreversible according to limited measurements on poisoned catalysts exposed to sulfur-free exhaust streams. Catalysts were tested over a temperature range of 473-773K, with the highest activity observed at 773K. Examination of this large temperature window has shown that the optimum C1:NOx ratio changes with temperature.
X