Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

A Study of Emission Durability and Ash Accumulation of “Advanced Three-way Catalyst Integrated on Gasoline Particulate Filter” for BS6 (Stage2) Applications

2021-09-22
2021-26-0182
India BS6 Stage2 (2023) regulations demand all gasoline direct injection (GDI) vehicles to meet particulate number emissions (PN) below 6x10+11# per km. Gasoline particulate filters (GPF) are a proven technology and enable high PN filtration efficiencies throughout the entire vehicle lifetime. One challenge for GPF applications could be the changing emission performance characteristics as a function of mileage due to collected ash and/or soot deposits with implications on back pressure losses. The main objective of this technical contribution is to study the above-mentioned challenges while applying Indian driving conditions and typical Indian climate and other ambient conditions. The substrate technology selected for this study is a high porosity GPF designed to enable the integration of a three-way functionality into the GPF, commonly described as catalyzed GPF (cGPF).
Technical Paper

Real World Study of Diesel Particulate Filter Ash Accumulation in Heavy-Duty Diesel Trucks

2006-10-16
2006-01-3257
In April 2003, a small field study was initiated to evaluate the effect of lube oil formulations on ash accumulation in heavy-duty diesel DPFs. Nine (9) Fuel Delivery Trucks were retrofitted with passive diesel particulate filters and fueled with ultra low sulfur diesel which contains less than 15 ppm sulfur. Each vehicle operated in the field for 18 months or approximately 160,000 miles (241,401 km) using one of three lube oil formulations. Ash accumulation was determined for each vehicle and compared between the three differing lube oil formulations. Ash analyses, used lube oil analysis and filter substrate evaluations were performed to provide a complete picture of DPF operations. The evaluation also examined some of the key parameters that allows for the successful implementation of the passive DPF in this heavy-duty application.
Technical Paper

Reduced Energy and Power Consumption for Electrically Heated Extruded Metal Converters

1993-03-01
930383
Improved designs of extruded metal electrically heated catalysts (EHC) in combination with a traditional converter achieved the California ultra-low emission vehicle (ULEV) standard utilizing 50% less electrical energy than previous prototypes. This energy reduction is largely achieved by reducing the mass of the EHC. In addition to energy reduction, the battery voltage is reduced from 24 volts to 12 volts, and the power is reduced from 12 kilowatts to 3 kilowatts. Also discussed is the impact EHC mass, EHC catalytic activity, and no EHC preheating has on non-methane hydrocarbon emissions, energy requirements, and power requirements.
Technical Paper

High Temperature Durability of Electrically Heated Extruded Metal Support

1994-03-01
940782
The design, performance and optimization of the extruded electrically heated metal converter have recently been published(1,2). The present paper focuses on the physical durability of extruded metal EHC support at high temperature representative of operating conditions. The mechanical, thermal, creep and fatigue properties of Fe-Cr-Al honeycomb structure over 25°-1000°C temperature range are reported. In addition, the stresses arising from mounting and thermal loads are computed via finite element analysis and compared with the high temperature strength of extruded metal EHC support. A safe design stress which predicts 192,000 kilometer durability is estimated from high temperature fatigue behavior of extruded Fe-Cr-Al honeycomb structure.
Technical Paper

Durability of Extruded Electrically Heated Catalysts

1995-02-01
950404
Extruded metal honeycombs are used as electrically heated catalysts (EHCs). The durability requirements of this application make demands on high surface area, thin cross-section metal honeycombs. Significant durability improvements over previous extruded metal honeycomb EHCs have been achieved by material and package design changes. The product redesign was supported by finite element models and extensive testing. The redesigned EHC has passed severe laboratory and field testing. The tests include electrical cycling to 1000°C/1600 cycles, hot vibration to 60g/900°C and demanding on-vehicle exposure. Excellent durability of the extruded metal honeycomb has been demonstrated.
Technical Paper

High Temperature Compressive Strength of Extruded Cordierite Ceramic Substrates

1995-02-01
950787
High temperature modulus of rupture (MOR) data, published previously, show that the ceramic catalyst supports get stronger with temperature due to the absence of water vapor and closure of microcracks which would otherwise act as stress concentrators [1, 2 and 3]*. The increased MOR value is partially responsible for the excellent durability of ceramic catalyst supports at high temperature. In this paper, we will present the compressive strength data of ceramic substrates at high temperature, namely the crush strength along B-axis and biaxial compressive strength of the whole substrate. Since the honeycomb strength is directly related to that of the individual cell wall, the compressive strength should also increase with temperature similar to the modulus of rupture. Accordingly, the ceramic substrates are capable of supporting higher mounting pressures exerted by the intumescent mat at high temperature [4].
Technical Paper

Effect of Ash on Gasoline Particulate Filter Using an Accelerated Ash Loading Method

2018-04-03
2018-01-1258
Gasoline particulate filter (GPF) is considered a suitable solution to meet the increasingly stringent particle number (PN) regulations for both gasoline direct injection (GDI) and multi-port fuel injection (MPI) engines. Generally, GDI engines emit more particulate matter (PM) and PN. In recent years, GDI engines have gained significant market penetration in the automobile industry owing to better fuel economy and drivability. In this study, an accelerated ash loading method was tested by doping lubricating oil into the fuel for a GDI engine. Emission tests were performed at different ash loads with different driving cycles and GPF combinations. The results showed that the GPF could significantly reduce particle emissions to meet the China 6 regulation. With further ash loading, the filtration efficiency increased above 99% and the effects on fuel consumption and backpressure were found to be limited, even with an ash loading of up to 50 g/l.
X