Refine Your Search

Topic

Search Results

Journal Article

The Aesthetics of Low Drag Vehicles

2011-06-09
2011-37-0016
Investigations of low drag shapes for passenger vehicles were conducted in the 1930s but production cars of today have yet to approach the potential drag coefficients shown by that early research. Furthermore, the adoption of low drag styles has been resisted because of a perception of compromise to the exterior style and so recent aerodynamic developments have concentrated on changes to non-styled surfaces. However, environmental and ecological pressures are placing increasing demands on manufacturers to produce energy efficient vehicles and the contribution of aerodynamics in that equation is increasing, particularly with the adoption of technologies such as regenerative braking and measurements being made using more real-world use driving cycles. Relying on non-styled surfaces alone for drag reduction is unlikely to be sufficient to deliver the improvements required.
Technical Paper

Cooling System Performance Evaluation

1998-02-01
980431
With the ever increasing demand on automotive manufactures to reduce lead times, improve performance, add air conditioning, meet noise and pollution legislation the need to evaluate and improve cooling system performance at the design stage is becoming increasingly important. The cooling system is taken to encompass the full air path of grills, inlet plenum, cooling pack, under bonnet resistance and outlet to the free stream. This paper describes the main structure of a PC based computer program which is being developed to permit the cooling system performance to be optimized at the vehicle concept stage or prior to major updates to a model, which could be for example front end styling or a change of engine. Also discussed are details of how the air paths through the cooling pack, and the system resistances from the inlet grill to the engine compartment outlet are determined.
Technical Paper

Hybrid Electric Vehicle Energy Management Using Game Theory

2008-04-14
2008-01-1317
The topic of energy management in Hybrid Electric Vehicles (HEVs) has received a great deal of recent attention. Various methods have been proposed to develop algorithms which manage energy flows within HEVs so that to optimally exploit energy storage capability of the battery and reduce fuel consumption while maintaining battery State of Charge. In addition, to the rule-based approaches, systematic optimal control methods based on deterministic and stochastic dynamic programming have been explored for HEV energy management optimization. In this paper, another novel framework based on the application of game theory is proposed, in which the HEV operation is viewed as a non-cooperative game between the driver and the powertrain.
Technical Paper

PICASSOS – Practical Applications of Automated Formal Methods to Safety Related Automotive Systems

2017-03-28
2017-01-0063
PICASSOS was a UK government funded programme to improve the ability of automotive supply chains to develop complex software-intensive systems with high safety assurance and at an acceptable cost. This was executed by a consortium of three universities and five companies including an automotive OEM and suppliers. Three major elements of the PICASSOS project were: use of automated model based verification technology utilising formal methods; application of this technology in the context of ISO 26262; and evaluation to measure the impact of this approach to inform key management decisions on the costs, benefits and risks of applying this technology on live projects. The project spanned system level design and software development. This was achieved by using a unified model based process incorporating SysML at the system level and using Simulink and Stateflow auto-coded into C at the software level.
Technical Paper

The Effect of Swirl on the Flow Uniformity in Automotive Exhaust Catalysts

2017-10-08
2017-01-2384
In aftertreatment system design, flow uniformity is of paramount importance as it affects aftertreatment device conversion efficiency and durability. The major trend of downsizing engines using turbochargers means the effect of the turbine residual swirl on the flow needs to be considered. In this paper, this effect has been investigated experimentally and numerically. A swirling flow rig with a moving-block swirl generator was used to generate swirling flow in a sudden expansion diffuser with a wash-coated diesel oxidation catalyst (DOC) downstream. Hot-wire anemometry (HWA) was used to measure the axial and tangential velocities of the swirling flow upstream of the diffuser expansion and the axial velocity downstream the monolith. With no swirl, the flow in the catalyst monolith is highly non-uniform with maximum velocities near the diffuser axis. At high swirl levels, the flow is also highly nonuniform with the highest velocities near the diffuser wall.
Technical Paper

Requirements for the Automated Generation of Attack Trees to Support Automotive Cybersecurity Assurance

2022-03-29
2022-01-0124
As the need for automotive assurance continues to grow, it becomes necessary to develop approaches which can provide assurance cases in a systematic and efficient manner. In the case of cybersecurity, this problem is exacerbated by the increasing complexity of vehicular onboard systems, their inherent obscurity due to their heterogenous architecture, emergent behaviors, and the disparate motivations and resources of potential threat agents. Furthermore, the advancement of connected autonomous vehicles (CAV) may allow external attackers to leverage the naïve trust ECUs have for adjacent devices to compromise the safety and security of the vehicle. To that end, there is an increased interest in automatically producing threat models such as attack trees, which usually rely on intensive expert driven construction or rudimentary formally defined processes, to identify potential threats to a vehicle.
Journal Article

Adjoint Method for the Optimisation of Conformal Cooling Channels of 3-D Printed High-Pressure Tools for Aluminium Casting

2022-03-29
2022-01-0246
The emergence of additive manufacturing (AM) technology has enabled the internal cooling channel layout for high pressure aluminium die casting (HPADC) tools to be designed and modified without topological constraint. Optimisation studies of a full industrial HPADC mould for extending the tool service life has received limited attention due to the high geometrical complexity and the various physics with multi time- and length- scales in addition to the manufacturability limitations. In this work, a new computationally efficient algorithm that employs the adjoint optimisation method has been developed to optimise the coolant channels layout in a complete mould with various 3D printed inserts. The algorithms significantly reduced the computational time and resources by decoupling the fluid flow in the coolant channels from the tool and simulating them separately.
Technical Paper

An Adaptable Security by Design Approach for Ensuring a Secured Remote Monitoring Teleoperation (RMTO) of an Autonomous Vehicle

2023-04-11
2023-01-0579
Remote Monitoring and Teleoperation (RMTO) of Autonomous Vehicles (AV) is advancing rapidly in the industry. Researchers and industrial partners explore the role RMTO plays in helping AV navigate complicated situations, among many others. At the heart of this lies the problem of potential pathways and attack vectors or threat surfaces by which a malicious attack can be carried out on an RMTO and an AV. The separation of cybersecurity considerations in RMTO is barely considered, as so far, most available research and activities are mainly focused on AV. The main focus of this paper is addressing RMTO cybersecurity utilising an adaptable security-by-design approach, although security-by-design is still in the infant state within automotive cybersecurity. An adaptable security-by-design approach for RMTO covers Security Engineering Life-cycle, Logical Security Layered Concept, and Security Architecture.
Technical Paper

Business Model Approach: Design “Versus” Economic Considerations for Automotive Recycling

2000-03-06
2000-01-0666
Automotive recycling within Europe increased with the analysis of the environmental focus of automotive products and their product system [1], which is reflected within Europe in new legislation governing the recyclability of vehicles. This paper presents a new tool for evaluating automotive recyclability in the design process, within a whole life cost methodology. The developed business model approach reviews automotive design practices and has adapted life cycle analysis techniques to give special consideration for recyclability and costing of alternative automotive design strategies. Engineering designers can utilise the business model approach to design and manufacture a more recyclable vehicle and incorporates the economic viability of the recycling process of a product or component at the design stage. This paper presents one example where the increasing complexity of product design can produce economic justifications for design for recycling.
Technical Paper

Navigation Systems in Europe. Past, Present and Bright Future

2000-03-06
2000-01-1298
The first navigation system was introduced in the market nearly 15 years ago and it encompassed dead reckoning unit combined with a digital map matching. Since then, the system has improved in accuracy (from the introduction of GPS and detailed mapping) and the velocity of route calculation (through improvements in computer power) until the current stage with the latest versions of products. Communications are going to play a major role in development of the next generation of Navigation systems. This paper will outline the present solution and new emerging technologies in data transmission such as DAB, TPEG, and GSM–SMS.
Technical Paper

Transport Telematics on the Verge of Globalisation

2000-03-06
2000-01-1299
A global Intelligent Transportation System (ITS) programme has yet to emerge, many countries consolidate their national markets into larger “Trading Blocs” e.g. European Union, USA and Japan. Within Europe, government agencies and companies have demonstrated ITS research co-operation in form of: DRIVE I; DRIVE II; DRIVE III; PROMETHEUS; and PROMOTE. In USA, government agencies, private sectors, academic institutes and transport organisations with ITS America, have created Intelligent Vehicle Highway System (IVHS) administration. In Japan government agencies like Ministry of International Trade and Industry, National Police Agency, Ministry of Construction, Ministry of Transport and Ministry of Posts and Communications control projects of Advanced Transport Telematics (ATT). This paper presents the “Globalisation” of ITS industry, where macroenvironmental factors are reviewed. Following the analysis, feasibility of a global holistic ITS programme will be determined.
Technical Paper

Effects on the Aerodynamic Characteristics of Vehicles in Longitudinal Proximity Due to Changes in Style

2018-05-30
2018-37-0018
The potential benefit for vehicles travelling in ‘platoon’ formations arises from a reduction in total aerodynamic drag which can result from the interaction of bluff bodies in close-proximity. During the 1980s this was considered as an opportunity to alleviate congestion and also for fuel-saving in response to the fuel crises of the 1970s. Early interest was limited partly due to the level of available control technology. But recent developments in vehicle-to-vehicle communication systems and autonomous driving technologies have provided the potential for platooning to be incorporated within future traffic management systems prompting renewed interest. For the investigation described in this paper, a new passenger car model was designed as the basis for determining the effectiveness of future low-drag styles in platoon formations. Small-scale models were tested in the Coventry University Wind Tunnel in platoons of up to 5 vehicles.
Technical Paper

Simplified CFD Model for Assessing the Cooling Channel Design in 3D Printed High-Pressure Tools for Aluminium Alloy Casting

2021-04-06
2021-01-0270
Additive manufacturing (AM) provides significant geometric design freedom for the cooling of high pressure die casting (HPDC) tools. Designing cooling channels that can achieve a uniform temperature throughout the tool-cast interface during the moulding process can limit part warping and sink marks, internal part stresses, and increase tool life. However, the design of the embedded cooling channels requires high computational resources to model the heat transfer process for the cast, mould, and coolant from the moment aluminium is injected into the cavity until the injection for the next cycle. To enable the examination of the effect of various parameters, a simplified 3-D CFD conjugate heat transfer model is introduced by considering the experimental observations. The model decouples the cast part from the mould.
Technical Paper

A New Take on Porous Medium Approach for Modelling Monoliths and Other Multiple Channel Devices

2019-09-09
2019-24-0049
The porous medium approach is widely used to represent high-resistance devices, such as catalysts, filters or heat exchangers. Because of its computational efficiency, it is invaluable when flow losses need to be predicted on a system level. One drawback of using the porous medium approach is the loss of detailed information downstream of the device. Correct evaluation of the turbulence downstream affects the calculation of the related properties, e.g. heat and mass transfer. The novel approach proposed in the current study is based on a modified distribution of the resistance across the porous medium, which allows to account for the single jets developing in the small channels, showing an improved prediction of the turbulence at the exit of the device, while keeping the low computational demand of the porous medium approach. The benefits and limitations of the current approach are discussed and presented by comparing the results with different numerical approaches and experiments.
Technical Paper

Modelling Pressure Losses in Gasoline Particulate Filters in High Flow Regimes and Temperatures

2019-12-19
2019-01-2330
This study presents a one-dimensional model for the prediction of the pressure loss across a wall-flow gasoline particulate filter (GPF). The model is an extension of the earlier models of Bissett [1] and Konstandopoulos and Johnson [2] to the turbulent flow regime, which may occur at high flow rates and temperatures characteristic of gasoline engine exhaust. A strength of the proposed model is that only one parameter (wall permeability) needs to be calibrated. An experimental study of flow losses for cold and hot flow is presented, and a good agreement is demonstrated. Unlike zero-dimensional models, this model provides information about the flow along the channels and thus can be extended for studies of soot and ash accumulation, heat transfer and reaction kinetics.
Technical Paper

An Examination of Comfort and Sensation for Manual and Automatic Controls of the Vehicle HVAC System

2019-01-15
2019-01-5005
The fast-changing and asymmetrical nature of the cabin environment challenges climate control systems in maintaining occupant comfort. This article examines the relationship between the control that occupants have over the heating, ventilation, and air conditioning (HVAC) system and their perceived comfort within the surrounding thermal environment. Three test cases using automatic control (20°C, 22°C, 24°C) and one in manual mode were evaluated via driving trials under normal road conditions in the United Kingdom during winter. In these trials, car cabin occupants felt more comfortable when using manual control than automatic (Fisher’s test, p = 2.2 × 10−16). Occupants felt neutral thermal sensations at head and foot level when using manual control. At chest level, occupants felt thermally neutral for both automatic and manual controls.
Technical Paper

An Investigation of Aerodynamic Characteristics of Three Bluff Bodies in Close Longitudinal Proximity

2019-04-02
2019-01-0659
The potential benefit for passenger cars when travelling in a ‘platoon’ formation results from the total aerodynamic drag reduction which may result from the interaction of bluff bodies in close-proximity. In the 1980s this was considered as an opportunity to alleviate congestion and also for fuel-saving in response to the oil crises of the 1970s. Early interest was limited by the availability of suitable systems to control vehicle spacing. However, recent developments in communication and control technologies intended for connected and autonomous driving applications has provided the potential for ‘platooning’ to be incorporated within future traffic management systems. The study described in this paper uses a systematic approach to changes in vehicle shape in order to identify the sensitivity of the benefits of platooning to vehicle style.
Technical Paper

Sensitivity Study of Battery Thermal Response to Cell Thermophysical Parameters

2021-04-06
2021-01-0751
Lithium-ion batteries (LiBs) have been widely used in electrified vehicles, and the battery thermal management (BTM) system is needed to maintain the temperature that is critical to battery performance, safety, and health. Conventionally, three-dimensional battery thermal models are developed at the early stage to guide the design of the BTM system, in which battery thermophysical parameters (radial thermal conductivity, axial thermal conductivity, and specific heat capacity) are required. However, in most literature, those parameters were estimated with greatly different values (up to one order of magnitude). In this paper, an investigation is carried out to evaluate the magnitude of the influence of those parameters on the battery simulation results. The study will determine if accurate measurements of battery thermophysical parameters are necessary.
Journal Article

An Investigation of Aerodynamic Characteristics of Three Bluff Bodies in Close Longitudinal Proximity - Part 2

2021-04-06
2021-01-0952
The work described in this paper is a continuation of an investigation into the effects of systematic changes in upper-body geometry on the aerodynamic drag of passenger-car-like bluff-body models in close longitudinal proximity and operating in platoon formations. The original work, presented in SAE paper 2019-01-0659, showed measurements of the aerodynamic drag of individual models within three-model platoons and for which each model was tested in three different upper-body configurations This provided a data-set of 27 platoon configurations to compare with the three baseline conditions of the isolated models. The work contrasted with other published platooning research in which the spacing, between homogeneous models in the platoons, was the only variable to be considered. In this publication the results of further wind tunnel tests, using the same models as before but in two-model platoons, providing a further 9 test configurations are compared with the original data.
Technical Paper

A CFD-Based Numerical Evaluation, Assessment and Optimization of Conjugate Heat Transfer for Aerodynamic Cooling of a Wheel-Hub-Motors in Micro-Mobility Vehicles

2023-04-11
2023-01-0760
Micro-mobility vehicles such as electric scooters and bikes are increasingly used for urban transportation; their designs usually trade off performance and range. Addressing thermal and cooling issues in such vehicles could enhance performance, reliability, life, and range. Limited packaging space within the wheels precludes the use of complex cooling systems that would also increase the cost and complexity of these mass-produced wheel motors. The present study begins by evaluating the external aerodynamics of the scooter to characterise the airflow conditions near the rotating wheel; then, a steady-state conjugate heat transfer model of a commercially available wheel hub motor (500W) is created using commercial computational fluid dynamics (CFD) software, StarCCM+. The CAD model of the motor used for this analysis has an external rotor permanent magnet (PM) brushless DC topology.
X