Refine Your Search

Topic

Search Results

Viewing 1 to 17 of 17
Journal Article

Applying Design for Assembly Principles in Computer Aided Design to Make Small Changes that Improve the Efficiency of Manual Aircraft Systems Installations

2014-09-16
2014-01-2266
The installation of essential systems into aircraft wings involves numerous labour-intensive processes. Many human operators are required to perform complex manual tasks over long periods of time in very challenging physical positions due to the limited access and confined space. This level of human activity in poor ergonomic conditions directly impacts on speed and quality of production but also, in the longer term, can cause costly human resource problems from operators' cumulative development of musculoskeletal injuries. These problems are exacerbated in areas of the wing which house multiple systems components because the volume of manual work and number of operators is higher but the available space is reduced. To improve the efficiency of manual work processes which cannot yet be automated we therefore need to consider how we might redesign systems installations in the enclosed wing environment to better enable operator access and reduce production time.
Technical Paper

An Evaluation of CFD for Modelling the Flow Around Stationary and Rotating Isolated Wheels

1998-02-01
980032
Navier-Stokes calculations for the flow around an isolated wheel have been performed. Both a stationary wheel on a fixed ground and a rotating wheel on a moving ground were considered. Extensive comparisons with experimental measurements of surface static pressure coefficient and wake total pressure are made. These show that CFD can give good qualitative results for the flow field around both stationary and rotating wheels. Highlighted are details about the separation process from the top of the wheel and the flow structure around the wheel contact area.
Technical Paper

Development of a Broad Delta Airframe and Propulsion Concepts for Reducing Aircraft Noise around Airports

2007-09-17
2007-01-3806
This paper describes the impact of noise on the civil aircraft design process. The challenge to design ‘silent’ aircraft is the development of efficient airframe-engine technologies, for which integration is essential to produce an optimum aircraft, otherwise penalties such as higher fuel consumption, and, or noise are a concern. A description of work completed by Cranfield University will cover design methodologies used for a Broad delta airframe concept, with reference to future studies into alternate concepts. Engine cycle designs for ultra-high bypass ratio, constant volume combustor, and recuperated propulsion cycles are described, with a discussion of integration challenges within the airframe.
Technical Paper

Regenerative Brake-by-Wire System Development and Hardware-In-Loop Test for Autonomous Electrified Vehicle

2017-03-28
2017-01-0401
As the essential of future driver assistance system, brake-by-wire system is capable of performing autonomous intervention to enhance vehicle safety significantly. Regenerative braking is the most effective technology of improving energy consumption of electrified vehicle. A novel brake-by-wire system scheme with integrated functions of active braking and regenerative braking, is proposed in this paper. Four pressure-difference-limit valves are added to conventional four-channel brake structure to fulfill more precise pressure modulation. Four independent isolating valves are adopted to cut off connections between brake pedal and wheel cylinders. Two stroke simulators are equipped to imitate conventional brake pedal feel. The operation principles of newly developed system are analyzed minutely according to different working modes. High fidelity models of subsystems are built in commercial software MATLAB and AMESim respectively.
Technical Paper

Comparison of the Far-Field Aerodynamic Wake Development for Three DrivAer Model Configurations using a Cost-Effective RANS Simulation

2017-03-28
2017-01-1514
The flow field and body aerodynamic loads on the DrivAer reference model have been extensively investigated since its introduction in 2012. However, there is a relative lack of information relating to the models wake development resulting from the different rear-body configurations, particularly in the far-field. Given current interest in the aerodynamic interaction between two or more vehicles, the results from a preliminary CFD study are presented to address the development of the wake from the Fastback, Notchback, and Estateback DrivAer configurations. The primary focus is on the differences in the far-field wake and simulations are assessed in the range up to three vehicle lengths downstream, at Reynolds and Mach numbers of 5.2×106 and 0.13, respectively. Wake development is modelled using the results from a Reynolds-Averaged Navier-Stokes (RANS) simulation within a computational mesh having nominally 1.0×107 cells.
Technical Paper

Applying a Concept for Robot-Human Cooperation to Aerospace Equipping Processes

2011-10-18
2011-01-2655
Significant effort has been applied to the introduction of automation for the structural assembly of aircraft. However, the equipping of the aircraft with internal services such as hydraulics, fuel, bleed-air and electrics and the attachment of movables such as ailerons and flaps remains almost exclusively manual and little research has been directed towards it. The problem is that the process requires lengthy assembly methods and there are many complex tasks which require high levels of dexterity and judgement from human operators. The parts used are prone to tolerance stack-ups, the tolerance for mating parts is extremely tight (sub-millimetre) and access is very poor. All of these make the application of conventional automation almost impossible. A possible solution is flexible metrology assisted collaborative assembly. This aims to optimise the assembly processes by using a robot to position the parts whilst an operator performs the fixing process.
Technical Paper

On the Aerodynamics of an Enclosed-Wheel Racing Car: An Assessment and Proposal of Add-On Devices for a Fourth, High-Performance Configuration of the DrivAer Model

2018-04-03
2018-01-0725
A modern benchmark for passenger cars - DrivAer model - has provided significant contributions to aerodynamics-related topics in automotive engineering, where three categories of passenger cars have been successfully represented. However, a reference model for high-performance car configurations has not been considered appropriately yet. Technical knowledge in motorsport is also restricted due to competitiveness in performance, reputation and commercial gains. The consequence is a shortage of open-access material to be used as technical references for either motorsport community or academic research purposes. In this paper, a parametric assessment of race car aerodynamic devices are presented into four groups of studies. These are: (i) forebody strakes (dive planes), (ii) front bumper splitter, (iii) rear-end spoiler, and (iv) underbody diffuser.
Technical Paper

Design Optimization of the Transmission System for Electric Vehicles Considering the Dynamic Efficiency of the Regenerative Brake

2018-04-03
2018-01-0819
In this paper, gear ratios of a two-speed transmission system are optimized for an electric passenger car. Quasi static system models, including the vehicle model, the motor, the battery, the transmission system, and drive cycles are established in MATLAB/Simulink at first. Specifically, since the regenerative braking capability of the motor is affected by the SoC of battery and motors torque limitation in real time, the dynamical variation of the regenerative brake efficiency is considered in this study. To obtain the optimal gear ratios, iterations are carried out through Nelder-Mead algorithm under constraints in MATLAB/Simulink. During the optimization process, the motor efficiency is observed along with the drive cycle, and the gear shift strategy is determined based on the vehicle velocity and acceleration demand. Simulation results show that the electric motor works in a relative high efficiency range during the whole drive cycle.
Technical Paper

Regenerative Braking Strategies for A Parallel Hybrid Powertrain with Torque Controlled IVT

2005-10-24
2005-01-3826
Hybrid electric vehicles (HEV) are considered as the most cost effective solution, in the short term perspective, for the achievement of improved fuel economy (FE) and reduced emissions. This paper focuses on regenerative braking in a mild hybrid powertrain with infinitely variable transmission (IVT) and specifically on how its control strategy can be formulated and optimized. The study is conducted using a previously validated fully dynamic powertrain model. An initial investigation of the dynamic vehicle behaviour under braking conditions serves as the basis for the development of a control strategy for best braking performance and maximum energy recovery, the implementation of which requires a fully active and integrated brake control system. Limitations and constraints due to driveline configuration and driveability issues are considered and their effect evaluated. Simulation results show that fuel consumption reductions of 12% are achievable along a standard drive cycle.
Technical Paper

Engine Cascade Rig Design Tests and Results in App C Conditions

2023-06-15
2023-01-1419
Current modelling capability for engine icing accretion prediction is still limited for App. C. To further validate icing codes in complex engine geometries, it is necessary to perform additional experimental work in relevant geometrical and environmental conditions. Within the frame of ICE GENESIS [1], an experiment has been setup to replicate the condition at the inlet of an engine first stage compressor. This paper describes the choices for the design of the engine compressor model, the setup within the icing wind tunnel and the methodology employed to obtain the results. Additionally, more effort has been focused on obtaining accurate ice shapes using a 3D scanning system. Results of 3D scans are given.
Technical Paper

The Integrated Trajectory Tracking, Yaw Stability and Roll Stability Model Predictive Control for Autonomous Vehicle in Limited Handling Condition

2023-04-11
2023-01-0667
In the current literature, the research studies on the trajectory tracking control and stability control strategy for autonomous vehicles in limited condition mostly focus on the yaw plane control, but few of the studies have considered the combined control performance of trajectory tracking, yaw and roll stability, and the roll stability is critical under the extreme cornering condition for autonomous vehicles. Aiming at the above shortages, this study designs the model predictive control (MPC) strategy for the autonomous vehicles under the limited handling condition, which integrates the front and rear wheel active steering control, four-wheel independent drive and braking control and active suspension control to comprehensively improve the trajectory tracking accuracy, yaw plane stability and roll plane stability of the vehicle under the extreme condition.
Technical Paper

Modelling of Distributed-Propulsion Low-Speed HALE UAVs Burning Liquid Hydrogen

2015-09-15
2015-01-2467
The present work focuses on developing an integrated airframe, distributed propulsion, and power management methodology for liquid-hydrogen-fuelled HALE UAVs. Differently from previous studies, the aim is to assess how the synergies between the aforementioned sub-systems affect the integrated system power requirement, production, and distribution. A design space exploration study was carried out to assess the influence of distributing motor-driven fans on three different airframes, namely a tube-and-wing, a triple-fuselage, and a blended-wing-body. For the considered range of take-off masses from 5,000 to 15,000 kg, the 200 kW payload power requirement under examination was found to re-shape the endurance trends. In fact, the drop in specific fuel consumption due to the engine design point change alters the trends from nearly flat to a 25% maximum endurance increase when moving towards heavier take-off masses.
Technical Paper

The Influence of Ground Condition on the Flow Around a Wheel Located Within a Wheelhouse Cavity

1999-03-01
1999-01-0806
A 3D Navier-Stokes CFD model of a wheel located within a wheelhouse cavity has been produced. Both a stationary wheel on a fixed ground and a rotating wheel on a moving ground were considered. Extensive comparisons with the results of a wind tunnel investigation based on the same geometry are presented. These consist of three force coefficients and pressures on the internal faces of the cavity. Comparison with the experimental results gave encouraging agreement. It was found that the rotating wheel produced more drag than the stationary wheel whilst shroud drag decreased when the groundplane was moving compared to when it was stationary.
Technical Paper

Performance Analyses of Driver-Vehicle-Steer-By-Wire Systems Considering Driver Neuromuscular Dynamics

2016-04-05
2016-01-0456
One main objective is to find out how these parameters interact and optimal driver control gain and driver preview time are obtained. Some steps further, neuromuscular dynamics is considered and the system becomes different from the simplified driver-vehicle system studied before. New optimal driver control gain and driver preview time could be obtained for both tensed and relaxed muscle state. Final step aims at analysing the full system considering driver, neuromuscular, steer-by-wire and vehicle models. The steer-by-wire system could potentially have a significant influence on the vehicle when the driver is at impaired state, which could be represented by setting higher response delay time or smaller preview time. Vehicle's stability and active safety could also be improved by introducing the steer-by-wire system.
Technical Paper

Investigation of Seat Suspensions with Embedded Negative Stiffness Elements for Isolating Bus Users’ Whole-Body Vibrations

2021-02-17
2021-01-5019
Bus drivers are a group at risk of often suffering from musculoskeletal problems, such as low-back pain, while bus passengers on the last-row seats experience accelerations of high values. In this paper, the contribution of K-seat in decreasing the above concern is investigated with a detailed simulation study. The K-seat model, a seat with a suspension that functions according to the KDamper concept, which combines a negative stiffness element with a passive one, is benchmarked against the conventional passive seat (PS) in terms of comfort when applied to different bus users’ seats. More specifically, it is tested in the driver’s and two different passengers’ seats, one from the rear overhang and one from the middle part. For the benchmark shake, both are optimized by applying excitations that correspond to real intercity bus floor responses when it drives over a real road profile.
Journal Article

Design and Development of a Mobile Robotic System for Aircraft Wing Fuel Tank Inspection

2022-03-08
2022-01-0042
This paper presents the design concept behind a novel remote visual inspection robotic system for fighter jet aircraft wing fuel tank inspection. This work is part of a larger research project which focuses on design, simulation, physical prototyping and experimental validation of a robotic system. Whereas this paper specifically focuses on the development concept of locomotion design choice for the robot. Therefore without an effective mobility method the robot will not be able to fulfill its purpose to access the hazardous confined spaces of the fuel tank. Aircraft wing fuel tank inspection is a challenging area of maintenance which requires a considerable amount of preparation and involvement of several tasks in order to conduct effective Visual and Non Destructive Inspection. The environment of an aircraft wing fuel tank poses several challenges due to both physical and atmospheric constraints which can be detrimental to human personal.
Journal Article

Aircraft Wing Build Philosophy Change through System Pre-Equipping of Major Components

2016-09-27
2016-01-2120
In the civil aircraft industry there is a continuous drive to increase the aircraft production rate, particularly for single aisle aircraft where there is a large backlog of orders. One of the bottlenecks is the wing assembly process which is largely manual due to the complexity of the task and the limited accessibility. The presented work describes a general wing build approach for both structure and systems equipping operations. A modified build philosophy is then proposed, concerned with large component pre-equipping, such as skins, spars or ribs. The approach benefits from an offloading of the systems equipping phase and allowing for higher flexibility to organize the pre-equipping stations as separate entities from the overall production line. Its application is presented in the context of an industrial project focused on selecting feasible system candidates for a fixed wing design, based on assembly consideration risks for tooling, interference and access.
X