Refine Your Search

Search Results

Viewing 1 to 12 of 12
Journal Article

Empirical Modeling of Transient Emissions and Transient Response for Transient Optimization

2009-04-20
2009-01-1508
Empirical models for engine-out oxides of Nitrogen (NOx) and smoke emissions have been developed for the purpose of minimizing transient emissions while maintaining transient response. Three major issues have been addressed: data acquisition, data processing and modeling method. Real and virtual transient parameters have been identified for acquisition. Accounting for the phase shift between transient engine events and transient emission measurements has been shown to be very important to the quality of model predictions. Several methods have been employed to account for the transient transport delays and sensor lags which constitute the phase shift. Finally several different empirical modeling methods have been used to determine the most suitable modeling method for transient emissions. These modeling methods include several kinds of neural networks, global regression and localized regression.
Journal Article

Axially Resolved Performance of Cu-Zeolite SCR Catalysts

2012-04-16
2012-01-1084
In this work, an alternative method is proposed and validated for quantifying the axial performance of a state-of-the-art Cu zeolite SCR catalyst. Catalyst cores of a standard length, with varying lengths of wash-coated regions were used to axially resolve the functional performance of the SCR catalyst. This proposed method was validated by quantifying the catalyst entrance and exit effects, as well as the effect of non-uniform wash-coat loading densities. This method is less susceptible to some of the complications highlighted in the previous studies, such as flow uniformity between channels, as well as radiative heating effects, since the product gases are sampled across the entire monolith cross-section rather than through a single catalyst channel. The specific catalyst functions quantified include: NO and NH₃ oxidation, NH₃ storage capacity, as well as NOx conversion efficiency.
Journal Article

New Insights into Reaction Mechanism of Selective Catalytic Ammonia Oxidation Technology for Diesel Aftertreatment Applications

2011-04-12
2011-01-1314
Mitigation of ammonia slip from SCR system is critical to meeting the evolving NH₃ emission standards, while achieving maximum NOx conversion efficiency. Ammonia slip catalysts (ASC) are expected to balance high activity, required to oxidize ammonia across a broad range of operating conditions, with high selectivity of converting NH₃ to N₂, thus avoiding such undesirable byproducts as NOx or N₂O. In this work, new insights into the behavior of an advanced ammonia slip catalyst have been developed by using accelerated progressive catalyst aging as a tool for catalyst property interrogation. The overall behavior was deconstructed to several underlying functions, and referenced to an active but non-selective NH₃ oxidation function of a diesel oxidation catalyst (DOC) and to the highly selective but minimally active NH₃ oxidation function of an SCR catalyst.
Journal Article

Impact of Accelerated Hydrothermal Aging on Structure and Performance of Cu-SSZ-13 SCR Catalysts

2015-04-14
2015-01-1022
In this contribution, nuanced changes of a commercial Cu-SSZ-13 catalyst with hydrothermal aging, which have not been previously reported, as well as their corresponding impact on SCR functions, are described. In particular, a sample of Cu-SSZ-13 was progressively aged between 550 to 900°C and the changes of performance in NH3 storage, oxidation functionality and NOx conversion of the catalyst were measured after hydrothermal exposure at each temperature. The catalysts thus aged were further characterized by NH3-TPD, XRD and DRIFTS techniques for structural changes. Based on the corresponding performance and structural characteristics, three different regimes of hydrothermal aging were identified, and tentatively as assigned to “mild”, “severe” and “extreme” aging. Progressive hydrothermal aging up to 750°C decreased NOx conversion to a small degree, as well as NH3 storage and oxidation functions.
Technical Paper

Advanced Catalyst Solutions for Hydrocarbon Emissions Control During Rich Operation of Lean NOx Trap Systems

2009-04-20
2009-01-0282
The operation of NOx Adsorber catalysts (NAC), also often referred to as Lean NOx Trap catalysts or NOx Storage-reduction catalysts, entails frequent periodic NOx regeneration events. These are accomplished by creating a net reducing, fuel-rich environment in the exhaust. The reduction of hydrocarbon emissions which occur during such fuel-rich events is challenging, due to the oxygen-deficient environment. In order to overcome this limitation, two possibilities exist: (i) oxygen can be stored during lean phase, to be used for hydrocarbon slip oxidation in the subsequent rich phase, or (ii) unreacted hydrocarbons can be trapped during the rich phase and oxidized during the following lean phase. In this work, two groups of catalytic solutions were developed and evaluated for hydrocarbon emission control based on these approaches: an Oxygen Storage Compound (OSC) based catalyst and zeolite-based hydrocarbon trap catalyst.
Technical Paper

Evaluation of Spatially Resolved Performance of NOx Adsorber Catalysts

2009-04-20
2009-01-0275
A novel laboratory methodology has been developed and applied to evaluate performance of NOx Adsorber catalysts, based on the detailed analysis of micro-core samples obtained from various locations in a full-size catalyst. The technique includes a protocol for evaluating various aspects of NOx performance, as well as direct measurements of the amount of sulfur on the catalyst. This method was used to determine the NOx performance and distribution of sulfur loading on several engine aged catalysts. It showed the ability to differentiate poor NOx performance due to insufficient desulfation from that due to thermal degradation. This method further quantifies different forms of sulfur that are present on the catalyst. These forms of sulfur are distinguished by the temperature at which they are removed. In addition, the aspects of sulfur behavior that are important to this technique are discussed.
Technical Paper

The Effect of Diesel Fuel Properties on Engine-out Emissions and Fuel Efficiency at Mid-Load Conditions

2009-11-02
2009-01-2697
The influence of various diesel fuel properties on the steady state emissions and performance of a Cummins light-duty (ISB) engine modified for single cylinder operation has been studied at the mid-load “cruise” operating condition. Designed experiments involving independent manipulation of both fuel properties and engine control parameters have been used to build statistical engine response models. The models were then applied to optimize for the minimum fuel consumption subject to specific constraints on emissions and mechanical limits and also to estimate the optimum engine control parameter settings and fuel properties. The study reveals that under the high EGR, diffusion-burn dominated conditions encountered during the experiments, NOx is impacted by cetane number and the distillation characteristics. Lower T50 (mid-distillation temperature) resulted in simultaneous reductions in both NOx and smoke, and higher cetane number provided an additional small NOx benefit.
Technical Paper

Achievement of Low Emissions by Engine Modification to Utilize Gas-to-Liquid Fuel and Advanced Emission Controls on a Class 8 Truck

2005-10-24
2005-01-3766
A 2002 Cummins ISM engine was modified to be optimized for operation on gas-to-liquid (GTL) fuel and advanced emission control devices. The engine modifications included increased exhaust gas recirculation (EGR), decreased compression ratio, and reshaped piston and bowl configuration. The emission control devices included a deNOx filter and a diesel particle filter. Over the transient test, the emissions met the 2007 standards. In July 2004, the modified engine was installed into a Class 8 tractor for use by a grocery fleet. Chassis emission testing of the modified vehicle was conducted at the National Renewable Energy Laboratory's (NREL) Renewable Fuels and Lubricants (ReFUEL) facility. Testing included hot and cold replicate Urban Dynamometer Driving Schedule (UDDS) and New York Composite (NYComp) cycles and several steady-state points. The objective of the testing was to demonstrate the vehicle's with the modified engine.
Technical Paper

Innovative Piston Design Performance for High Efficiency Stoichiometric Heavy Duty Natural Gas Engine

2023-04-11
2023-01-0288
Internal combustion engines will continue to be the leading power-train in the heavy-duty, on-highway sector as technologies like hydrogen, fuel cells, and electrification face challenges. Natural gas (NG) engines offer several advantages over diesel engines including near zero particle matter (PM) emissions, lower NOx emissions, lower capital and operating costs, availability of vast domestic NG resources, and lower CO2 emissions being the cleanest burning of all hydrocarbons (HC). The main limitation of this type of engine is the lower efficiency compared to diesel counterparts. Addressing the limitations (knock and misfire) for achieving diesel-like efficiencies is key to accomplishing widespread adoption, especially for the US market. With the aim to achieve high brake thermal efficiency (BTE), three (3) computational fluid dynamics (CFD) optimized pistons with three different compression ratios (CR) have been tested.
Technical Paper

SCR Architectures for Low N2O Emissions

2015-04-14
2015-01-1030
The high global warming potential of nitrous oxide (N2O) led to its inclusion in the list of regulated greenhouse gas (GHG) pollutants [1, 2]. The mitigation of N2O on aftertreatment catalysts was shown to be ineffective as its formation and decomposition temperatures do not overlap. Therefore, the root causes for N2O formation were investigated to enable the catalyst architectures and controls development for minimizing its formation. In a typical heavy-duty diesel exhaust aftertreatment system based on selective catalytic reduction of NOx by ammonia derived from urea (SCR), the main contributors to tailpipe N2O are expected to be the undesired reaction between NOx and NH3 over SCR catalyst and NH3 slip in to ammonia slip catalyst (ASC), part of which gets oxidized to N2O.
Journal Article

Application of Dynamic Skip Fire for NOx and CO2 Emissions Reduction of Diesel Powertrains

2021-04-06
2021-01-0450
Dynamic Skip Fire (DSF®) has been shown to significantly reduce CO2 on gasoline engines and has been in mass production since 2018. Diesel Dynamic Skip Fire (dDSF™) builds upon the technology and extends it to diesel engine applications. dDSF is an advanced cylinder deactivation technology that allows the deactivation of any number of cylinders dynamically to deliver the requested torque while maintaining acceptable noise, vibration, and harshness (NVH) performance. NOx regulations are becoming progressively more stringent on light, medium and heavy-duty (HD) diesel engines. Meeting low NOx standards is becoming increasingly challenging, especially in lightly loaded operating conditions where maintaining ideal aftertreatment system efficiency is difficult. Most existing techniques to increase aftertreatment temperatures at low loads incur a fuel consumption penalty, which increases greenhouse gas emissions.
Technical Paper

Experimental and Modeling Study on the Thermal Aging Impact on the Performance of the Natural Gas Three-Way Catalyst

2023-04-11
2023-01-0375
The prediction accuracy of a three-way catalyst (TWC) model is highly associated with the ability of the model to incorporate the reaction kinetics of the emission process as a lambda function. In this study, we investigated the O2 and H2 concentration profiles of TWC reactions and used them as critical inputs for the development of a global TWC model. We presented the experimental data and global kinetic model showing the impact of thermal degradation on the performance of the TWC. The performance metrics investigated in this study included CH4, NOx, and CO conversions under lean, rich, and dithering light-off conditions to determine the kinetics of oxidation reactions and reduction/reforming/water-gas shift reactions as a function of thermal aging. The O2 and H2 concentrations were measured using mass spectrometry to track the change in the oxidation state of the catalyst and to determine the mechanism of the reactions under these light-off conditions.
X