Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Multi-Vehicle Evaluation of Gasoline Additive Packages: A Fourth Generation Protocol for the Assessment of Intake System Deposit Removal

2009-11-02
2009-01-2635
Building on two decades of expertise, a fourth generation fleet test protocol is presented for assessing the response of engine performance to gasoline additive treatment. In this case, the ability of additives to remove pre-existing deposit from the intake systems of port fuel injected vehicles has been examined. The protocol is capable of identifying real benefits under realistic market conditions, isolating fuel performance from other effects thereby allowing a direct comparison between different fuels. It is cost efficient and robust to unplanned incidents. The new protocol has been applied to the development of a candidate fuel additive package for the North American market. A vehicle fleet of 5 quadruplets (5 sets of 4 matched vehicles, each set of a different model) was tested twice, assessing the intake valve clean-up performance of 3 test fuels relative to a control fuel.
Journal Article

Target Setting Principles and Methods in the Product Development Cycle

2010-04-12
2010-01-0014
Vehicle target setting is an evolving process based on continually changing internal (management, standards) and external (competitive and legal) requirements. In addition to evolving requirements, the process for establishing and documenting targets may not be clear. The objective of this paper is to detail the overall process of target setting, the critical factors to consider, and key definitions for each stage of the process. It will describe the complete process from early competitive benchmarking to final verification testing. Setting targets for a vehicle requires definition and thorough benchmarking of the competition, an understanding of the key attributes used to describe the vehicles' performance, and a clearly defined set of requirements. These requirements will be regulatory, corporate and competitively based and grouped by clearly defined, customer perceived attributes which can be cascaded to specific vehicle systems.
Journal Article

Diagnostics Design Process for Developmental Vehicles

2010-04-12
2010-01-0247
In this paper a diagnostic design process is proposed for developmental vehicles where mainstream design process is not well-suited. First a review of current practice in on-board vehicle fault diagnostics design is presented with particular focus on the application of this process to the development of the Ford Escape Hybrid Electric Vehicle (HEV) program and a demonstration Fuel Cell Electric Vehicle (FCEV) program. Based on the review and evaluation of these experiences, a new tool for diagnostics design is proposed that promises to make the design more traceable, to reduce the repetition of work, and to improve understandability and reuse.
Journal Article

Occupant Preferred Back Angle Relative to Head Restraint Regulations

2010-04-12
2010-01-0779
Having, by now, introduced several new vehicles that comply with FMVSS 202a, manufacturers are reporting an increased number of complaints from consumers who find that the head restraint is too close; negatively affecting their posture. It is speculated that one of the reasons that head restraints meeting the new requirement are problematic is that the FMVSS backset measurement is performed at a back angle that is more reclined than the back angle most drivers choose and the back angle at which the seat / vehicle was designed. The objective of this paper is to confirm this hypothesis and elaborate on implications for regulatory compliance in FMVSS 202a.
Journal Article

Deformation Analysis of Incremental Sheet Forming

2010-04-12
2010-01-0991
Incremental Sheet Forming (ISF) is an emerging sheet metal prototyping technology where a part is formed as one or more stylus tools are moving in a pre-determined path and deforming the sheet metal locally while the sheet blank is clamped along its periphery. A deformation analysis of incremental forming process is presented in this paper. The analysis includes the development of an analytical model for strain distributions based on part geometry and tool paths; and numerical simulations of the forming process with LS-DYNA. A skew cone is constructed and used as an example for the study. Analytical and numerical results are compared, and excellent correlations are found. It is demonstrated that the analytical model developed in this paper is reliable and efficient in the prediction of strain distributions for incremental forming process.
Journal Article

Derivation of Effective Strain-Life Data, Crack Closure Parameters and Effective Crack Growth Data from Smooth Specimen Fatigue Tests

2013-04-08
2013-01-1779
Small crack growth from notches under variable amplitude loading requires that crack opening stress be followed on a cycle by cycle basis and taken into account in making fatigue life predictions. The use of constant amplitude fatigue life data that ignores changes in crack opening stress due to high stress overloads in variable amplitude fatigue leads to non-conservative fatigue life predictions. Similarly fatigue life predictions based on small crack growth calculations for cracks growing from flaws in notches are non-conservative when constant amplitude crack growth data are used. These non-conservative predictions have, in both cases, been shown to be due to severe reductions in fatigue crack closure arising from large (overload or underload) cycles in a typical service load history.
Journal Article

Methods in Vehicle Mass and Road Grade Estimation

2014-04-01
2014-01-0111
Dynamic vehicle loads play critical roles for automotive controls including battery management, transmission shift scheduling, distance-to-empty predictions, and various active safety systems. Accurate real-time estimation of vehicle loads such as those due to vehicle mass and road grade can thus improve safety, efficiency, and performance. While several estimation methods have been proposed in literature, none have seen widespread adoption in current vehicle technologies despite their potential to significantly improve automotive controls. To understand and bridge the gap between research development and wider adoption of real-time load estimation, this paper assesses the accuracy and performance of four estimation methods that predict vehicle mass and/or road grade.
Journal Article

A Copula-Based Approach for Model Bias Characterization

2014-04-01
2014-01-0735
Available methodologies for model bias identification are mainly regression-based approaches, such as Gaussian process, Bayesian inference-based models and so on. Accuracy and efficiency of these methodologies may degrade for characterizing the model bias when more system inputs are considered in the prediction model due to the curse of dimensionality for regression-based approaches. This paper proposes a copula-based approach for model bias identification without suffering the curse of dimensionality. The main idea is to build general statistical relationships between the model bias and the model prediction including all system inputs using copulas so that possible model bias distributions can be effectively identified at any new design configurations of the system. Two engineering case studies whose dimensionalities range from medium to high will be employed to demonstrate the effectiveness of the copula-based approach.
Journal Article

Modeling of an Advanced Steering Wheel and Column Assembly for Frontal and Side Impact Simulations

2014-04-01
2014-01-0803
This paper presents the final phase of a study to develop the modeling methodology for an advanced steering assembly with a safety-enhanced steering wheel and an adaptive energy absorbing steering column. For passenger cars built before the 1960s, the steering column was designed to control vehicle direction with a simple rigid rod. In severe frontal crashes, this type of design would often be displaced rearward toward the driver due to front-end crush of the vehicle. Consequently, collapsible, detachable, and other energy absorbing steering columns emerged to address this type of kinematics. These safety-enhanced steering columns allow frontal impact energy to be absorbed by collapsing or breaking the steering columns, thus reducing the potential for rearward column movement in severe crashes. Recently, more advanced steering column designs have been developed that can adapt to different crash conditions including crash severity, occupant mass/size, seat position, and seatbelt usage.
Journal Article

Analyzing and Predicting Heterogeneous Customer Preferences in China's Auto Market Using Choice Modeling and Network Analysis

2015-04-14
2015-01-0468
As the world's largest auto producer and consumer, China is both the most promising and complex market given the country's rapid economic growth, huge population, and many regional and segment preference differences. This research is aimed at developing data-driven demand models for customer preference analysis and prediction under a competitive market environment. Regional analysis is first used to understand the impact of geographical factors on customer preference. After a comprehensive data exploration, a customer-level mixed logit model is built to shed light on fast-growing vehicle segments in the Chinese auto market. By combining the data of vehicle purchase, consideration, and past choice, cross-shopping behaviors and brand influence are explicitly modeled in addition to the impact of customer demographics, usage behaviors, and attributes of vehicles.
Journal Article

An Iterative Application of Multi-Disciplinary Optimization for Vehicle Body Weight Reduction Based on 2015 Mustang Product Development

2015-04-14
2015-01-0470
Designing a vehicle body involves meeting numerous performance requirements related to different attributes such as NVH, Durability, Safety, and others. Multi-Disciplinary Optimization (MDO) is an efficient way to develop a design that optimizes vehicle performance while minimizing the weight. Since a body design evolves in course of the product development cycle, it is essential to repeat the MDO process several times as a design matures and more accurate data become available. This paper presents a real life application of the MDO process to reduce weight while optimizing performance over the design cycle of the 2015 Mustang. The paper discusses the timing and results of the applied Multi-Disciplinary Optimization process. The attributes considered during optimization include Safety, Durability and Body NVH. Several iterations of MDO have been performed at different milestones in the design cycle leading to a significant weight reduction of the already optimized design by over 16kg.
Journal Article

Simulation and Optimization of an Aluminum-Intensive Body-on-Frame Vehicle for Improved Fuel Economy and Enhanced Crashworthiness - Front Impacts

2015-04-14
2015-01-0573
Motivated by a combination of increasing consumer demand for fuel efficient vehicles, more stringent greenhouse gas, and anticipated future Corporate Average Fuel Economy (CAFE) standards, automotive manufacturers are working to innovate in all areas of vehicle design to improve fuel efficiency. In addition to improving aerodynamics, enhancing internal combustion engines and transmission technologies, and developing alternative fuel vehicles, reducing vehicle weight by using lighter materials and/or higher strength materials has been identified as one of the strategies in future vehicle development. Weight reduction in vehicle components, subsystems and systems not only reduces the energy needed to overcome inertia forces but also triggers additional mass reduction elsewhere and enables mass reduction in full vehicle levels.
Journal Article

Influence of Test Procedure on Friction Behavior and its Repeatability in Dynamometer Brake Performance Testing

2014-09-28
2014-01-2521
The efforts of the ISO “Test Variability Task Force” have been aimed at improving the understanding and at reducing brake dynamometer test variability during performance testing. In addition, dynamometer test results have been compared and correlated to vehicle testing. Even though there is already a vast amount of anecdotal evidence confirming the fact that different procedures generate different friction coefficients on the same brake corner, the availability of supporting data to the industry has been elusive up to this point. To overcome this issue, this paper focuses on assessing friction levels, friction coefficient sensitivity, and repeatability under ECE, GB, ISO, JASO, and SAE laboratory friction evaluation tests.
Journal Article

Heavy-Duty Vehicle Fuel Saving Technology Analysis to Support Phase 2 Regulations

2015-09-29
2015-01-2775
This paper presents the fuel consumption results of engine and vehicle simulation modeling for a wide variety of individual technologies and technology packages applied to a long haul heavy duty vehicle. Based on the simulation modeling, up to 11% in fuel savings is possible using commercially available and emerging technologies applied to a 15L DD15 engine alone. The predicted fuel savings are up to 17% in a Kenworth T700 tractor-trailer unit equipped with a range of vehicle technologies, but using the baseline DD15 diesel engine. A combination of the most aggressive engine and vehicle technologies can provide savings of up to 29%, averaged over a range of drive cycles. Over 30% fuel savings were found with the most aggressive combination on a simulated long haul duty cycle. Note that not all of these technologies may prove to be cost-effective. The fuel savings benefits for individual technologies vary widely depending on the drive cycles and payload.
Journal Article

An Engine and Powertrain Mapping Approach for Simulation of Vehicle CO2 Emissions

2015-09-29
2015-01-2777
Simulations used to estimate carbon dioxide (CO2) emissions and fuel consumption of medium- and heavy-duty vehicles over prescribed drive cycles often employ engine fuel maps consisting of engine measurements at numerous steady-state operating conditions. However, simulating the engine in this way has limitations as engine controls become more complex, particularly when attempting to use steady-state measurements to represent transient operation. This paper explores an alternative approach to vehicle simulation that uses a “cycle average” engine map rather than a steady state engine fuel map. The map contains engine CO2 values measured on an engine dynamometer on cycles derived from vehicle drive cycles for a range of generic vehicles. A similar cycle average mapping approach is developed for a powertrain (engine and transmission) in order to show the specific CO2 improvements due to powertrain optimization that would not be recognized in other approaches.
Journal Article

Analysis Process for Truck Fuel Efficiency Study

2015-09-29
2015-01-2778
Medium- and Heavy Duty Truck fuel consumption and the resulting greenhouse gas (GHG) emissions are significant contributors to overall U.S. GHG emissions. Forecasts of medium- and heavy-duty vehicle activity and fuel use predict increased use of freight transport will result in greatly increased GHG emissions in the coming decades. As a result, the National Highway Traffic Administration (NHTSA) and the United States Environmental Protection Agency (EPA) finalized a regulation requiring reductions in medium and heavy truck fuel consumption and GHGs beginning in 2014. The agencies are now proposing new regulations that will extend into the next decade, requiring additional fuel consumption and GHG emissions reductions. To support the development of future regulations, a research project was sponsored by NHTSA to look at technologies that could be used for compliance with future regulations.
Journal Article

Medium-Duty Vehicle Fuel Saving Technology Analysis to Support Phase 2 Regulations

2015-09-29
2015-01-2769
This paper presents the results of engine and vehicle simulation modeling for a wide variety of individual technologies and technology packages applied to two medium-duty vocational vehicles. Simulation modeling was first conducted on one diesel and two gasoline medium-duty engines. Engine technologies were then applied to the baseline engines. The resulting fuel consumption maps were run over a range of vehicle duty cycles and payloads in the vehicle simulation model. Results were reported for both individual engine technologies and combinations or packages of technologies. Two vehicles, a Kenworth T270 box delivery truck and a Ford F-650 tow truck were evaluated. Once the baseline vehicle models were developed, vehicle technologies were added. As with the medium-duty engines, vehicle simulation results were reported for both individual technologies and for combinations. Vehicle technologies were evaluated only with the baseline 2019 diesel medium-duty engine.
Journal Article

Design and Implementation of a D-EGR® Mixer for Improved Dilution and Reformate Distribution

2017-03-28
2017-01-0647
The Dedicated EGR (D-EGR®) engine has shown improved efficiency and emissions while minimizing the challenges of traditional cooled EGR. The concept combines the benefits of cooled EGR with additional improvements resulting from in-cylinder fuel reformation. The fuel reformation takes place in the dedicated cylinder, which is also responsible for producing the diluents for the engine (EGR). The D-EGR system does present its own set of challenges. Because only one out of four cylinders is providing all of the dilution and reformate for the engine, there are three “missing” EGR pulses and problems with EGR distribution to all 4 cylinders exist. In testing, distribution problems were realized which led to poor engine operation. To address these spatial and temporal mixing challenges, a distribution mixer was developed and tested which improved cylinder-to-cylinder and cycle-to-cycle variation of EGR rate through improved EGR distribution.
Journal Article

Understanding the Octane Appetite of Modern Vehicles

2016-04-05
2016-01-0834
Octane appetite of modern engines has changed as engine designs have evolved to meet performance, emissions, fuel economy and other demands. The octane appetite of seven modern vehicles was studied in accordance with the octane index equation OI=RON-KS, where K is an operating condition specific constant and S is the fuel sensitivity (RONMON). Engines with a displacement of 2.0L and below and different combinations of boosting, fuel injection, and compression ratios were tested using a decorrelated RONMON matrix of eight fuels. Power and acceleration performance were used to determine the K values for corresponding operating points. Previous studies have shown that vehicles manufactured up to 20 years ago mostly exhibited negative K values and the fuels with higher RON and higher sensitivity tended to perform better.
Technical Paper

Development of a Burner-Based Test System to Produce Controllable Particulate Emissions for Evaluation of Gasoline Particulate Filters

2020-04-14
2020-01-0389
Gasoline Direct Injection (GDI) engines have been widely adopted by manufacturers in the light-duty market due to their fuel economy benefits. However, several studies have shown that GDI engines generate higher levels of particulate matter (PM) emissions relative to port fuel injected (PFI) engines and diesel engines equipped with optimally functioning diesel particulate filters (DPF). With stringent particle number (PN) regulations being implemented in both, the European Union and China, gasoline particulate filters (GPF) are expected to be widely utilized to control particulate emissions. Currently, evaluating GPF technologies on a vehicle can be challenging due to a limited number of commercially available vehicles that are calibrated for a GPF in the United States as well as the costs associated with vehicle procurement and evaluations utilizing a chassis dynamometer facility.
X