Refine Your Search

Topic

Author

Search Results

Journal Article

Air Spring Air Damper: Modelling and Dynamic Performance in Case of Small Excitations

2013-05-13
2013-01-1922
Air spring systems gain more and more popularity in the automotive industry and with the ever growing demand for comfort nowadays they are almost inevitable. Some significant advantages over conventional steel springs are appealing for commercial vehicles as well as for the modern passenger vehicles in the luxury class. Current production air spring systems exist in combination with hydraulic shock absorbers (integrated or resolved). An alternative is to use the medium air not only as a spring but also as a damper: a so-called air spring air damper. Air spring air dampers are force elements which could be a great step for the chassis technology due to their functionality (frequency selectivity, load levelling, load independent vibration behaviour, load dependent damping). Some of their design which avoid dynamic seals by the using of rubber bellows contribute to a better ride comfort.
Journal Article

An Experimental Methodology for Measuring of Aerodynamic Resistances of Heavy Duty Vehicles in the Framework of European CO2 Emissions Monitoring Scheme

2014-04-01
2014-01-0595
Due to the diversity of Heavy Duty Vehicles (HDV), the European CO2 and fuel consumption monitoring methodology for HDVs will be based on a combination of component testing and vehicle simulation. In this context, one of the key input parameters that need to be accurately defined for achieving a representative and accurate fuel consumption simulation is the vehicle's aerodynamic drag. A highly repeatable, accurate and sensitive measurement methodology was needed, in order to capture small differences in the aerodynamic characteristics of different vehicle bodies. A measurement methodology is proposed which is based on constant speed measurements on a test track, the use of torque measurement systems and wind speed measurement. In order to support the development and evaluation of the proposed approach, a series of experiments were conducted on 2 different trucks, a Daimler 40 ton truck with a semi-trailer and a DAF 18 ton rigid truck.
Technical Paper

Thermal Behavior of an Electronics Compartment with Respect to Real Driving Conditions

2020-04-14
2020-01-1299
The reliability of electronic components is of increasing importance for further progress towards automated driving. Thermal aging processes such as electromigration is one factor that can negatively affect the reliability of electronics. The resulting failures depend on the thermal load of the components within the vehicle lifetime - called temperature collective - which is described by the temperature frequency distribution of the components. At present, endurance testing data are used to examine the temperature collective for electronic components in the late development stage. The use of numerical simulation tools within Vehicle Thermal Management (VTM) enables lifetime thermal prediction in the early development stage, but also represents challenges for the current VTM processes [1, 2]. Due to the changing focus from the underhood to numerous electronic compartments in vehicles, the number of simulation models has steadily increased.
Journal Article

From Exterior Wind Noise Loads to Interior Cabin Noise: A Validation Study of a Generic Automotive Vehicle

2015-06-15
2015-01-2328
The object of the validation study presented in this paper is a generic vehicle, the so-called SAE body, developed by a consortium of German car manufacturers (Audi, Daimler, Porsche, Volkswagen). Many experiments have been performed by the abovementioned consortium on this object in the past to investigate its behavior when exposed to fluid flow. Some of these experiments were used to validate the simulation results discussed in the present paper. It is demonstrated that the simulation of the exterior flow is able to represent the transient hydrodynamic structures and at the same time both the generation of the acoustic sources and the propagation of the acoustic waves. Performing wave number filtering allows to identify the acoustic phenomena and separate them from the hydrodynamic effects. In a next step, the noise transferred to the interior of the cabin through the glass panel was calculated, using a Statistical Energy Analysis approach.
Journal Article

TPA and NVH Prognosis - Application to Mercedes Benz Car Development of New Hybrid Methods Coupling Digital Simulation with Prototype Testing Results

2012-06-13
2012-01-1535
Digital NVH development has become a common tool for any acoustic engineer. Vehicles in their early development stages are nowadays mainly described and validated as digital models. However there still remain needs for improvement in the domains of acoustic and vibration prediction, as instance: refining models, addressing intricate systems, and CAE resistant phenomena. In a background of increasing modularity and process transfers, hybrid methods coupling with testing results, have shown a great potential for improving the quality of NVH prognosis and development quality. Mercedes-Benz passenger car division has developed, tested and introduced a new engineering tool, based on the classical TPA applications coupled with hybrid simulation techniques. This toolbox is used to enhance the prognoses of acoustic interior noise and vibration comfort.
Technical Paper

Bluetec Emission Control System for the US Tier 2 Bin 5 Legislation

2008-04-14
2008-01-1184
While the market share for diesel engines for LD vehicles in Europe has grown continuously in the past years, the market share in North America is still negligible. Until now, it has been possible to fulfill the limits for nitrogen oxides (NOx) both in Europe and in North America by engine measures alone, without using an active NOx aftertreatment system. With the introduction of Tier II Bin 8 and Tier II Bin 5 emissions legislation in the US in 2007, most new diesel applications will now require NOx aftertreatment. One of the possible technologies for the reduction of nitrogen oxides in lean exhaust gas is the NOx storage catalyst which has become the generally-accepted choice for engines with gasoline direct injection systems and which is also utilized in the current diesel Bluetec I systems from Daimler. For heavier applications urea-SCR is the preferred technology to fulfill NOx legislation limits.
Technical Paper

Virtual Transfer Path Analysis at Daimler Trucks

2009-05-19
2009-01-2243
As for passenger cars, the overall noise and vibration comfort in commercial trucks and busses becomes an increasingly important sales argument. In order to effectively reduce the noise and vibration levels it is required to identify possible NVH issues at an early stage in the vehicle development process. For this reason a so-called “Virtual Transfer Path Analysis” (VTPA) method has been implemented which combines the results obtained from the conventional multi-body simulation and finite element method approaches. The resulting VTPA tool enables Daimler Trucks to systematically investigate and predict the complex interaction between powertrain excitation and the resulting vehicle response well before hardware prototypes become available. An overview of the theory is presented as well as the practical application and outcome of the technique applied in a past product development.
Technical Paper

The Role of Mercedes Benz do Brasil in the Global Production Network of Daimler Trucks - Based on a Nationalization Project

2008-10-07
2008-36-0120
The commercial vehicle division of Daimler AG developed in the last decades a strong production network, driving the company to a large exchange of parts and aggregates, especially between the plants in Europe and South America. In this article the decision taking methodology for new investments inside this production network is described. The industrialization of engine core parts in Brazil was analyzed by the support of an evaluation tool, and considering the major aspects of a new production site and its supply relationships. The results of the evaluation give transparency about the feasibility of different production network configurations, their interdependencies and the impact of the main influencing factors and drove the board of management to a clear decision, as it happened in other projects which used the same methodology.
Technical Paper

Development of Universal Brake Test Data Exchange Format and Evaluation Standard

2010-10-10
2010-01-1698
Brake system development and testing is spread over vehicle manufacturers, system and component suppliers. Test equipment from different sources, even resulting from different technology generations, different data analysis and report tools - comprising different and sometimes undocumented algorithms - lead to a difficult exchange and analysis of test results and, at the same time, contributes to unwanted test variability. Other studies regarding the test variability brought up that only a unified and unambiguous data format will allow a meaningful and comparative evaluation of these data and only standardization will reveal the actual reasons of test variability. The text at hand illustrates that a substantial part of test variability is caused by a misinterpretation of data and/or by the application of different algorithms.
Technical Paper

Towards an Aspect Driven Approach for the Analysis, Evaluation and Optimization of Safety Within the Automotive Industry

2010-04-12
2010-01-0208
An approach will be presented how development projects for safety-related and software-intensive automotive systems can be controlled through the application of model-based risk assessment. Therefore specific control measures have to be developed, which represent the degree of fulfilment of several aspects of safety-related developments. The control measures are evaluated through the analysis of risk-reducing aspects, for which the process of identification and specification is described. Thus, a framework for the creation of a probabilistic and aspect-oriented risk-analysis model (AORA) for safety related projects within automotive industries is currently under development. With respect to the upcoming safety standard ISO 26262 the twofold approach focuses on both, the identification and specification of risk-reducing aspects within the development as well as the application of a probabilistic reasoning model.
Technical Paper

Finding All Potential Run-Time Errors and Data Races in Automotive Software

2017-03-28
2017-01-0054
Safety-critical embedded software has to satisfy stringent quality requirements. All contemporary safety standards require evidence that no data races and no critical run-time errors occur, such as invalid pointer accesses, buffer overflows, or arithmetic overflows. Such errors can cause software crashes, invalidate separation mechanisms in mixed-criticality software, and are a frequent cause of errors in concurrent and multi-core applications. The static analyzer Astrée has been extended to soundly and automatically analyze concurrent software. This novel extension employs a scalable abstraction which covers all possible thread interleavings, and reports all potential run-time errors, data races, deadlocks, and lock/unlock problems. When the analyzer does not report any alarm, the program is proven free from those classes of errors. Dedicated support for ARINC 653 and OSEK/AUTOSAR enables a fully automatic OS-aware analysis.
Technical Paper

μAFS High Resolution ADB/AFS Solution

2016-04-05
2016-01-1410
A cooperation of several research partners supported by the German Federal Ministry of Research and Education proposes a new active matrix LED light source. A multi pixel flip chip LED array is directly mounted to an active driver IC. A total of 1024 pixel can be individually addressed through a serial data bus. Several of these units are integrated in a prototype headlamp to enable advanced light distribution patterns in an evaluation vehicle.
Technical Paper

Development of a LIF-Imaging System for Simultaneous High-Speed Visualization of Liquid Fuel and Oil Films in an Optically Accessible DISI Engine

2018-04-03
2018-01-0634
Downsizing and direct injection in modern DISI engines can lead to fuel impinging on the cylinder walls. The interaction of liquid fuel and engine oil due to fuel impinging on the cylinder wall causes problems in both lubrication and combustion. To analyze this issue with temporal and spatial resolution, we developed a laser-induced fluorescence (LIF) system for simultaneous kHz-rate imaging of fuel and oil films on the cylinder wall. Engine oil was doped with traces of the laser dye pyrromethene 567, which fluoresces red after excitation by 532 nm laser radiation. Simultaneously, the liquid fuel was visualized by UV fluorescence of an aromatic “tracer” in a non-fluorescent surrogate fuel excited at 266 nm. Two combinations of fuel and tracer were investigated, iso-octane and toluene as well as a multi-component surrogate and anisole. The fluorescence from oil and fuel was spectrally separated and detected by two cameras.
Technical Paper

Numerical Simulation of the Transient Heat-Up of a Passenger Vehicle during a Trailer Towing Uphill Drive

2013-04-08
2013-01-0873
In the digital prototype development process of a new Mercedes-Benz, thermal protection is an important task that has to be fulfilled. In the early stages of development, numerical methods are used to detect thermal hotspots in order to protect temperature sensitive parts. These methods involve transient full Vehicle Thermal Management (VTM) simulations to predict dynamic vehicle heat-up during critical load cases. In order to simulate thermal control mechanisms, a coupled 1D to 3D thermal vehicle model is built in which the coolant and oil circuit of the engine, as well as the exhaust flow are captured in detail. When performing a transient 3D VTM analysis, the conduction and radiation phenomena are simulated using a transient structure model while the convective phenomena are co-simulated in a steady state fluid model. Both models are brought to interaction at predetermined points by an automatized coupling method.
Technical Paper

An Approach to Develop Energy Efficient Operation Strategies and Derivation of Requirements for Vehicle Subsystems Using the Vehicle Air Conditioning System as an Example

2013-04-08
2013-01-0568
Rising oil prices and increasing strict emission legislation force vehicle manufacturers to reduce fuel consumption of future vehicles. In order to meet this target, the process of converting fuel into useable energy and the use of this energy by the different energy-consuming vehicle's subsystems have to be examined. Vehicles' subsystems consist of energy-supplying, energy-consuming, and in some cases energy-storing components. Due to the high complexity of these systems and their interaction, optimization of their energy efficiency is a challenging task. By introducing individual operational strategies for each subsystem, it is possible to increase the energy efficiency for a specific function. To further improve the vehicle's overall energy efficiency, holistic control strategies are introduced that distribute the energy between the subsystems intelligently.
Technical Paper

Daimler Aeroacoustic Wind Tunnel: 5 Years of Operational Experience and Recent Improvements

2018-09-24
2018-01-5038
Since 2013 the new Daimler Aeroacoustic Wind Tunnel (AAWT) is in operation at the Mercedes-Benz Technology Center in Sindelfingen, Germany. This construction was the second stage of a wind tunnel center project, which was launched in 2007 and started with the climatic wind tunnels including workshop and office areas. The AAWT features a test facility for full-scale cars and vans with a nozzle exit area of 28 m2, a five-belt system, and underfloor balance to measure forces with best possible road simulation. With a remarkable low background noise level of the wind tunnel, vehicle acoustics can be investigated under excellent conditions using high-performance measurement systems. An overview is given about the building and the design features of the wind tunnel layout. The aerodynamic and aeroacoustic properties are summarized. During the first years of operation, further improvements regarding the wind tunnel background noise and vehicle handling were made.
Technical Paper

Numerical Investigation of Droplets Condensation on a Windshield: Prediction of Fogging Behavior

2015-04-14
2015-01-0360
An accurate model to predict the formation of fogging and defogging which occurs for low windshield temperatures is helpful for designing the air-conditioning system in a car. Using a multiphase flow approach and additional user-defined functions within the commercial CFD-software STAR-CCM+, a model which is able to calculate the amount of water droplets on the windshield from condensation and which causes the fogging is set up. Different parameters like relative humidity, air temperature, mass flow rate and droplet distributions are considered. Because of the condition of the windshield's surface, the condensation occurs as tiny droplets with different sizes. The distribution of these very small droplets must be obtained to estimate numerically the heat transfer coefficient during the condensation process to predict the defogging time.
Technical Paper

Approach for Parameter Determination for Objective Comfort Evaluation of the Vehicle Vibration Induced by Powertrain

2014-06-30
2014-01-2065
The driving comfort influences the customer purchase decision; hence it is an important aspect for the vehicle development. To better quantify the comfort level and reduce the experiment costs in the development process, the subjective comfort assessment by test drivers is nowadays more and more replaced by the objective comfort evaluation. Hereby the vibration comfort is described by scalar objective characteristic parameters that correlate with the subjective assessments. The correlation analysis requires the assessments and measurements at different vehicle vibration. To determine the objective parameters regarding the powertrain excitations, most experiments in the previous studies were carried out in several test vehicles with different powertrain units.
Technical Paper

Holistic Approach for Improved Safety Including a Proposal of New Virtual Test Conditions of Small Electric Vehicles

2015-04-14
2015-01-0571
In the next 20 years the share of small electric vehicles (SEVs) will increase especially in urban areas. SEVs show distinctive design differences compared to traditional vehicles. Thus the consequences of impacts of SEVs with vulnerable road users (VRUs) and other vehicles will be different from traditional collisions. No assessment concerning vehicle safety is defined for vehicles within European L7e category currently. Focus of the elaborated methodology is to define appropriate test scenarios for this vehicle category to be used within a virtual tool chain. A virtual tool chain has to be defined for the realization of a guideline of virtual certification. The derivation and development of new test conditions for SEVs are described and are the main focus of this work. As key methodology a prospective methodical analysis under consideration of future aspects like pre-crash safety systems is applied.
Technical Paper

A Numerical Methodology to Compute Temperatures of a Rotating Cardan Shaft

2013-04-08
2013-01-0843
In this paper a new numerical methodology to compute component temperatures of a rotating cardan shaft is described. In general temperatures of the cardan shaft are mainly dominated by radiation from the exhaust gas system and air temperatures in the transmission tunnel and underbody. While driving the cardan shaft is rotating. This yields a uniform temperature distribution of the circumference of the shaft. However most simulation approaches for heat protection are nowadays steady-state computations. In these simulations the rotation of the cardan shaft is not considered. In particular next to the exhaust gas system the distribution of the temperatures of the cardan shaft is not uniform but shows hot temperatures due to radiation at the side facing the exhaust gas system and lower temperatures at the other side. This paper describes a new computational approach that is averaging the radiative and convective heat fluxes circumferentially over bands of the cardan shaft.
X