Refine Your Search

Topic

Search Results

Technical Paper

The Application of a New Software Tool for Separating Engine Combustion and Mechanical Noise Excitation

2007-05-15
2007-01-2376
The optimization of engine NVH is still an important aspect for vehicle interior and exterior noise radiation. To optimize the engine noise / vibration contribution to the vehicle, a complete understanding of the excitation mechanism, the vibration transfer in the engine structure and the radiation efficiency of the individual engine components is required. Concerning the excitation within the engine, a very efficient analysis methodology for the combustion- and mechanical excitation within gasoline and diesel engines has been developed. Out of this methodology a software tool has been designed for a fast, efficient and detailed evaluation of the combustion- and mechanical excitation content of total engine noise. Recently this software tool has been successfully applied in engine NVH optimization work for defining the best optimization strategies for engine NVH reduction and noise quality improvement especially with respect to combustion excitation.
Technical Paper

Sound - Design for Motorcycles Influence of Different Parameters on the Sound

2006-11-13
2006-32-0084
Beside performance, handling and styling the sound characteristic of a motorcycle is a very important feature for the acceptance of the product by the customers and therefore the commercial success of a new product. Creating a special brand sound becomes more and more important to create a product that can be easily distinguished from competitor products and is therefore considered to be something special. On the other hand the legal limits in terms of pass - by noise allow for a very little margin for the creation of a special sound. During the product sound design phase the different perceptions of the rider wearing a helmet and pedestrians have to be considered. In passenger cars sound design has been known for a long time and the creation of a special sound for the driver inside the passenger compartment can be achieved with little influence on the exterior noise and therefore on the noise which is limited by legislation.
Technical Paper

Sunroof Buffeting Suppression Using a Dividing Bar

2007-04-16
2007-01-1552
This paper presents the results of CFD study on sunroof buffeting suppression using a dividing bar. The role of a dividing bar in side window buffeting case was illustrated in a previous study [8]. For the baseline model of the selected vehicle in this study, a very high level of sunroof buffeting, 133dB, has been found. The CFD simulation shows that the buffeting noise can be significantly reduced if a dividing bar is installed at the sunroof. A further optimization study on the dividing bar demonstrates that the peak buffeting level can be reduced to 123dB for the selected vehicle if the dividing bar is installed at its optimal location, 65% of the total length from the front edge of the sunroof. The peak buffeting level can be further reduced to 100dB if the dividing bar takes its optimal width 80mm, 15% of the total length of the sunroof for this vehicle, while staying at its optimal location.
Technical Paper

Errors in the Driveline System Balancing Process

2001-04-30
2001-01-1504
Single-plane balancing is a very well-understood process, whereby an imbalance vector is determined and then opposed by a similar vector of equal magnitude but 180° out of phase. This is used in many situations to improve machine performance, vibration, noise etc. However, there is inherent in this process a sensitivity to errors of measurement and correction, since a large imbalance vector and the equally large correction vector must be of exactly equal magnitude and exactly 180° apart for perfect balance. This paper examines the effect of errors in measurement of the initial imbalance and correction of it on the residual balance of automotive drivelines. In particular, it examines the effects of the errors present in a system whereby a system balance correction is made, on a driveline assembly, at discrete points around a given plane (at bolt locations). Errors occur in measurement of vibration, in calculating correction masses and in applying those correction masses.
Technical Paper

Determination of the noise contributions of engine surfaces

2001-04-30
2001-01-1482
One of the key elements in efforts to minimize the noise emmissionis of engines and other machinery is the knowledge of the main noise radiating surfaces and the relation between measurable surface vibration and the sound pressure. Under the name of Airborne Source Quantification (ASQ), various techniques have been developed to discretize and quantify the source strength, and noise contributions, of vibrating surface patches of machinery or vehicle components. The noise contributions of patches to the sound pressure at specific locations in the sound field or to the total radiated sound power are identified. The source strength of equivalent point sources, the acoustic transfer from the source surface to critical sound field locations and finally the sound pressure contributions of the individual patches are quantified. These techniques are not unique to engine application, but very relevant for engine development. An example is shown for an engine under artificial excitation.
Technical Paper

Test Based Methods for High Frequency Structureborne Noise

2001-04-30
2001-01-1523
NVH engineers typically are dealing with issues that relate to shake, harshness and low frequency noise and vibration concerns. However there is a greater importance being placed on dealing with high frequency structureborne noise problems which are related to gear meshing forces and drivetrain dynamics. This paper presents a case study of a high frequency structureborne noise problem. The objective of the paper is to show the application and effectiveness of using various testing based techniques such as Transfer Path, Running modes, and Mobility analysis along with acoustic excited operating deflection shapes for solving these problems in a timely and effective manner.
Technical Paper

Development of an Air Intake System Using Vibro-Acoustics Numerical Modeling

2001-04-30
2001-01-1519
This paper describes the use of Vibro-Acoustics numerical modeling for prediction of an Air Intake System noise level for a commercial vehicle. The use of numerical methods to predict vehicle interior noise levels as well as sound radiated from components is gaining acceptance in the automotive industry [1]. The products of most industries can benefit from improved acoustic design. On the other hand, sound emission regulation has become more and more rigorous and customers expect quieter products. The aim of this work it is to assess the Vibro-Acoustics behavior of Air Intake System and influence of it in the sound pressure level of the vehicle.
Technical Paper

Pass-By Noise Prediction for Trucks Based on Powertrain Test-Cell Measurements

2001-04-30
2001-01-1564
The paper outlines and discusses the possibilities of a new instrumentation tool for the analysis of engine and gearbox noise radiation and the prediction of pass-by noise from powertrain test cell measurements. Based on a 32 channel data acquisition board, the system is intended to be quick and easy to apply in order to support engineers during their daily work in the test cell. The pass-by prediction is a purely experimental approach with test cell recordings being weighted by measured transfer functions (from the powertrain compartment to the pass-by point).
Technical Paper

Active Boom Noise Damping of Dodge Durango

2001-04-30
2001-01-1614
Two active boom noise damping techniques using a Helmholtz resonator-based compensator and a lead compensator called a positive pressure feedback have been developed at the University of Dayton [1]. The two damping techniques are of feedback type and their compensators can be implemented in software or hardware (using inexpensive operational amplifiers). The active damping system would rely on a speaker, a low-cost microphone, two accelerometers, and an electronic circuit (or a micro-controller) to add damping to the offending low-frequency vibroacoustic modes of the cavity. The simplicity of the active boom noise damping system lends itself to be incorporated into a vehicle's sound system. The Helmholtz resonator-based strategy is implemented on a Dodge Durango sport utility vehicle. The control scheme adds appreciable amount of damping to the first cavity mode and the first structurally induced acoustic mode of the cabin.
Technical Paper

Engine Internal Dynamic Force Identification and the Combination with Engine Structural and Vibro-Acoustic Transfer Information

2001-04-30
2001-01-1596
The vibration-generating mechanisms inside an engine are highly non-linear (combustion, valve operation, hydraulic bearing behavior, etc.). However, the engine structure, under the influence of these vibration-generating mechanisms, responds in a highly linear way. For the development and optimization of the engine structure for noise and vibration it is beneficial to use fast and ‘simple’ linear models, like linear FE-models, measured modal models or measured FRF-models. All these models allow a qualitative assessment of variants without excitation information. But, for true optimization, internal excitation spectra are needed in order to avoid that effort is spent to optimize non-critical system properties. Unfortunately, these internal excitation spectra are difficult to measure. Direct measurement of combustion pressure is still feasible, but crank-bearing forces, piston guidance forces etc. can only be identified indirectly.
Technical Paper

Simulation of Engine's Structure Borne Noise Excitation due to the Timing Chain Drive

2002-03-04
2002-01-0451
Due to durability and lifetime requirements, the timing drive systems of modern passenger car engines are often equipped with chain drives. Chain driven systems are usually more critical in view of NVH compared to synchronous belt-drives. Mainly the polygonal effect and the related phenomena, like impacts caused by the meshing between the chain-links and impacts in the engagement/disengagement regions of guides and sprockets, lead to an increased excitation of the engine's structure. Since the polygonal effect occurs with the meshing frequency, the excited vibrations are basically narrow banded and can finally be recognized as an annoying whine-noise. This paper describes the modeling (MBS) of the entire timing-drive system containing a bushing-chain-drive, camshafts and all connected single valve trains. The investigations carried out are mainly focused on the primary dynamics of the chain drive and the forces which are transferred to the engine's structure.
Technical Paper

Electromagnetic Compatibility of Direct Current Motors in an Automobile Environment

2005-04-11
2005-01-0637
As the volume and complexity of electronics increases in automobiles, so does the complexity of the electromagnetic relationship between systems. The reliability and functionality of electronic systems in automobiles can be affected by noise sources such as direct current (DC) motors. A typical automobile has 25 to 100+ DC motors performing different tasks. This paper investigates the noise environment due to DC motors found in automobiles and the requirements that automobile manufacturers impose to suppress RF electromagnetic noise and conducted transients.
Technical Paper

End-Correction in Open Ducts: An Experimental Study

2022-06-15
2022-01-0987
This paper presents the results of an investigation on the influence of a duct’s geometry and shape on its acoustic length, which differs from its physical length by a factor referred to as end-correction. In addition to traditional parameters such as length and diameter, the author has investigated the effect of additional geometry features which are less commonly addressed in the technical literature, such as a diameter contraction or a bent section along the duct. The relative microphone position with respect to the pipe orifice and to the ground surface of the measurement environment has been investigated, showing negligible impact on the measurement results. The sound wave propagation within a pipe featuring a diameter contraction has then been analysed, showing the relationship between the pipe contraction shape and location and the pipe acoustic length.
Technical Paper

Optimization Study for Sunroof Buffeting Reduction

2006-04-03
2006-01-0138
This paper presents the results of optimization study for sunroof buffeting reduction using CFD technology. For an early prototype vehicle as a baseline model in this study a high level of sunroof buffeting 133dB has been found. The CFD simulation shows that the buffeting noise can be reduced by installing a wind deflector at its optimal angle 40 degrees from the upward vertical line. Further optimization study demonstrates that the buffeting peak SPL can be reduced to 97dB if the sunroof glass moves to its optimal position, 50% of the total length of the sunroof from the front edge. For any other vehicles, the optimization procedure is the same to get the optimal parameters. On the other hand, however, this optimization study is only based on fluid dynamics principle without considering manufacturability, styling, cost, etc. Further work is needed to utilize the results in the production design.
Technical Paper

Numerical Methods to Calculate Gear Transmission Noise

1997-05-20
971965
This report shows the methods, which AVL uses for the calculation of gear box noise. The analysis of the gear box structure (housing) is done using finite element method (FEM), thereby the natural frequencies are calculated as well as forced vibrations. As input for the FE calculation of the forced vibrations, the dynamic bearing forces of the shafts in the gear box or the dynamic tooth mesh are used. These forces are determined using the MBS (multi body system) software GTDYN, considering the torsional vibrations as well as axial and bending vibrations. Several examples of calculation results for the investigation of the gear dynamics are shown within the scope of this report.
Technical Paper

An Integrated Numerical Tool for Engine Noise and Vibration Simulation

1997-05-20
971992
The development of low noise engines and vehicles, accompanied by the reduction of costs and development time, can be obtained only if the design engineer is supported by complex calculation tools in a concurrent engineering process. In this respect, the reduction of vibrations (passenger comfort) and of vehicle noise (accelerated pass by noise) are important targets to meet legislative limits. AVL has been developing simulation programs for the dynamic-acoustic optimization of engines and gear trains for many years. To simulate the structure-born and air-born noise behavior of engines under operating conditions, substantial efforts on the mathematical simulation model are necessary. The simulation tool EXCITE, described in this paper, allows the calculation of the dynamic-acoustic behavior of power units.
Technical Paper

Engineering Vehicle Sound Quality

1997-05-20
972063
The characteristically good fuel economy of the high speed direct injection diesel engine has led to increased market share as the power unit of passenger cars. This trend is particularly true in Europe and, if not halted prematurely by emissions legislation, is likely to continue. However, another characteristic of the high speed DI engine is increased noise and vibration over its gasoline counterpart. This has meant that additional noise and vibration measures are required in order to approach the competitive refinement levels of gasoline engine installations. This paper considers some of the characteristic diesel engine noise and vibration problems associated with vehicle installation and passenger comfort. The paper also discusses subjective and objective assessment and considers approaches to engineering more desirable sound quality.
Technical Paper

Subjective Assessment of Roughness as a Basis for Objective Vehicle Interior Noise Quality Evaluation

1999-05-17
1999-01-1850
This paper focuses on psychoacoustical experiments for the assessment of roughness by using vehicle interior noise. The experimental design is carried out carefully to derive reliable data for further analysis with objective parameters. Apart from the acoustical properties of the recording/playback system the different meanings of the word roughness are taken into account, because each person has its own interpretation of ‘roughness’ differing between the phenomenons of roughness, r-roughness, rumble, harshness, fluctuation strength, etc.. An important preparation for psychoacoustical experiments is a clear definition of the sound attribute under investigation by using typical examples. Furthermore, accidental influences of other psychoacoustical parameters like the influence of loudness have to be avoided.
Technical Paper

Empirical Noise Model for Power Train Noise in a Passenger Vehicle

1999-05-17
1999-01-1757
Power train noise reaches the interior through structureborne paths and through airborne transmission of engine casing noise. To determine transfer functions from vibration to interior noise a shaker was attached at the engine attachment points, with the engine removed. A simple engine noise simulator, with loudspeaker cones on its faces, was placed in the engine compartment to measure airborne transfer functions to interior noise. Empirical noise estimates, based on the incoherent sum of contributions for individual source terms times the appropriate transfer function, compared remarkably well with measured levels obtained from dynomometer tests. Airborne transmission dominates above 1.5kHz. At lower frequencies engine casing radiation and vibration contributions are comparable.
Journal Article

Application of the Wave Based Technique to Predict the Engine Noise Radiation Under Anechoic Conditions

2009-05-19
2009-01-2211
As an alternative to the element based methods, recently a wave based technique (WBT) has been developed. Since it is based on the indirect Trefftz approach, exact solutions of the governing differential equation are used to approximate the dynamic field variables. This paper discusses the extensions of the WBT for the analysis of engine noise radiation problems in 3 dimensions under anechoic conditions. Furthermore, necessary extensions of shape functions, numerical integration and a methodology to create a WBT radiation models are described. The performance of the method compared to a commercial BEM solution is demonstrated with a real engine example.
X