Refine Your Search

Topic

Author

Search Results

Viewing 1 to 19 of 19
Technical Paper

Engine Cambore Distortion Analysis From Design to Manufacturing

2004-03-08
2004-01-1449
The cambore distortion is one of major concerns of an engine performance. A good design does not ensure a quality product. To meet product performance requirements, engineering community turns efforts to both design and manufacturing at an early stage of product development. This paper will discuss this process by providing an example of design and manufacturing of an overhead cambore. In this study a methodology to evaluate bore distortions is introduced. FEA cambore distortion analysis will use it to provide necessary data so that the product team can make a sound decision.
Technical Paper

Automated Safety Critical Software Development for Distributed Control Systems: A COTS Approach

2001-03-05
2001-01-0675
This paper presents a commercial off-the-shelf (COTS) approach to the automated generation of safety critical software for a distributed control system. The tool suite presented supports Honeywell's next generation Modular Aerospace Controls (MAC) architecture that facilitates fault tolerant distributed engine control utilizing intelligent components connected with TTP/C. This paper describes the integration of tool chains from two commercial vendors, the BEACON™ tool chain from Applied Dynamics International (ADI) and the TTP support tool chain from Time Triggered Technology (TTTech). The integration of these tool chains yields a powerful end-to-end systems-to-software environment that enables a fully automated approach to the development of distributed embedded software and its verification data.
Technical Paper

Effective Computer-Aided Engineering in the Automotive Product Development Stages

2001-03-05
2001-01-0764
This paper show how the automotive product development process is presented in four distinct stages. The specific type of task, to be presented at each stage, is discussed. Specific CAE (Computer-Aided-Engineering) tasks, such as FEA (Finite Element Analysis), to be used at each stage are discussed. Detailed steps to follow are presented, as well as a check list of tasks are included. The changes and increased effectiveness (developed over 15 years of utilization) are discussed.
Technical Paper

Predicted vs. Actual Compensation in a Stamping Die

2001-10-16
2001-01-3108
Traditional methods used to produce a die set (from developing initial machining cutter paths through finalized die tryout to produce a part that meets design intent) begin with draw simulation and development. It is here, traditionally, that scientific evaluation of actual metal stretch and theoretical ideals end. In past programs, a designed part would be simulated for stretch and a development model created to include various die compensations (i.e. springback, overcrown, etc.) based on past experience for area and amount. At this point, the die is cut and undergoes a metamorphosis through die tryout to finally produce a quality part. This is currently an open loop system. This paper will focus on the differences in the predicted way the die should look and the actual outcome (after part buyoff).
Technical Paper

Modeling and Validation of Large Hydraulic Hose Deflections

2002-10-06
2002-01-2589
A modeling methodology is being developed to aid in routing and predicting movement of brake hoses with the objective of having an adequate representation in a Computer Aided Design (CAD) system for virtual prototyping. Once mount points and orientations have been specified,material properties and length determine the path of the hose. Data, collected on a straight and deflected hose at several points along the length of the hose, were compared to an ADAMS simulation. Problems that were encountered in metrology and data transfer are discussed along with their potential impact on the modeling accuracy.
Technical Paper

Perforation Corrosion Performance of Autobody Steel Sheet in On-Vehicle and Accelerated Tests

2003-03-03
2003-01-1238
The Auto/Steel Partnership Corrosion Project Team has completed a perforation corrosion test program consisting of on-vehicle field exposures and various accelerated tests. Steel sheet products with eight combinations of metallic and organic coatings were tested, utilizing a simple crevice coupon design. On-vehicle exposures were conducted in St. John's and Detroit for up to seven years to establish a real-world performance standard. Identical test specimens were exposed to the various accelerated tests, and the results were compared to the real-world standard. This report documents the results of these tests, and compares the accelerated test results (including SAE J2334, GM9540P, Ford APGE, CCT-I, ASTM B117, South Florida Modified Volvo, and Kure Beach (25-meter) exposures) to the on-vehicle tests. The results are compared in terms of five criteria: extent of corrosion, rank order of material performance, degree of correlation, acceleration factor, and control of test environment.
Technical Paper

A Proposed Byzantine Fault-Tolerant Voting Architecture using Time-Triggered Ethernet

2017-09-19
2017-01-2111
Over the last couple decades, there has been a growing interest in incorporating commercial off-the-shelf (COTS) technologies and open standards in the design of human-rated spacecraft. This approach is intended to reduce development and upgrade costs, lower the need for new design work, eliminate reliance on individual suppliers, and minimize schedule risk. However, it has not traditionally been possible for COTS solutions to meet the high reliability and fault tolerance requirements of systems implementing critical spacecraft functions. Byzantine faults are considered particularly dangerous to such systems because of their ability to escape traditional means of fault containment and disrupt consensus between system components. In this paper, we discuss the design of a voting protocol using Time-Triggered Ethernet capable of achieving data integrity in the presence of a single Byzantine fault.
Technical Paper

Secure Deterministic L2/L3 Ethernet Networking for Integrated Architectures

2017-09-19
2017-01-2103
Cybersecurity attacks exploit vulnerabilities related to the increased complexity and connectivity of critical infrastructure systems. This paper investigates the context and use of key security technologies, processes, challenges and use cases for the design of advanced integrated architectures with security, safety, and real-time performance considerations. In such architectures, deterministic Ethernet standards are used as a baseline for system integration in closed embedded systems or open mixed criticality systems. Security-informed safety development processes for integrated architectures are required to prevent catastrophic failures caused by environmental and cyber threats, due to expanding number of security vulnerabilities in complex and increasingly open systems. State-of-art safety/security processes for integrated systems in cross-industry environments are considered and similarities examined, for different types of integrated architectures.
Technical Paper

Evaluation of Advanced Diesel Oxidation Catalyst Concepts: Part 2

2006-04-03
2006-01-0032
The development of diesel powered passenger cars is driven by the enhanced emission legislation. To fulfill the future emission limits there is a need for advanced aftertreatment devices. A comprehensive study was carried out focusing on the improvement of the DOC as one part of these systems, concerning high HC/CO conversion rates, low temperature light-off behaviour and high temperature aging stability, respectively. The first part of this study was published in [1]. Further evaluations using a high temperature DPF aging were carried out for the introduced systems. Again the substrate geometry and the catalytic coating were varied. The results from engine as well as vehicle tests show advantages in a highly systematic context by changing either geometrical or chemical factors. These results enable further improvement for the design of the exhaust system to pass the demanding emission legislation for high performance diesel powered passenger cars.
Technical Paper

Electromagnetic Compatibility of Direct Current Motors in an Automobile Environment

2005-04-11
2005-01-0637
As the volume and complexity of electronics increases in automobiles, so does the complexity of the electromagnetic relationship between systems. The reliability and functionality of electronic systems in automobiles can be affected by noise sources such as direct current (DC) motors. A typical automobile has 25 to 100+ DC motors performing different tasks. This paper investigates the noise environment due to DC motors found in automobiles and the requirements that automobile manufacturers impose to suppress RF electromagnetic noise and conducted transients.
Technical Paper

Damped Accelerometers and Their Use in Vehicle Crash Testing

2005-04-11
2005-01-0746
At one time it was considered imperative to collect high frequency accelerometer data for accurate analysis. As a result current FMVSS regulations and SAE J2570 require the use of accelerometers with damping ratio of 0.05 or less (designated as undamped). This prevents the use of damped accelerometers for regulated channels. Damped accelerometers can provide comparable data and in some cases better data than undamped accelerometers, as long as they meet specific minimum requirements. To collect the most useful data, damped accelerometers should be added to the tool box of transducers used by crash test facilities.
Technical Paper

A Finite Element Model of the TRL Honeycomb Barrier for Compatibility Studies

2005-04-11
2005-01-1352
A finite element model of the Transport Research Laboratory (TRL) honeycomb barrier, which is being proposed for use in vehicle compatibility studies, has been developed for use in LSDYNA. The model employs penalty parameters to enforce continuity between adjacent finite elements of the honeycomb barrier. Results of impact tests with indentors of various shapes and sizes were used to verify the performance of the computational model. Numerical simulations show reasonably good agreement with the test results.
Technical Paper

OSEKtime: A Dependable Real-Time Fault-Tolerant Operating System and Communication Layer as an Enabling Technology for By-Wire Applications

2000-03-06
2000-01-1051
The new generation of drive-by-wire systems currently under development has demanding requirements on the electronic architecture. Functions such as brake-by-wire or steer-by-wire require continued operation even in the presence of component failures. The electronic architecture must therefore provide fault-tolerance and real-time response. This in turn requires the operating system and the communication layer to be predictable, dependable and composable. It is well known that this properties are best supported by a time-triggered approach. A consortium consisting of German and French car manufacturers and suppliers, which aims at becoming a working group within the OSEK/VDX initiative, the OSEKtime consortium, is currently defining a specification for a time-triggered operating system and a fault-tolerant communication layer.1 The operating system and the communication layer are based on applicable interfaces of the OSEK/VDX standard.
Technical Paper

Optimization of Single-Point Frontal Airbag Fire Threshold

2000-03-06
2000-01-1009
The relationship of the airbag fire-distribution as a function of impact velocity to the airbag fire-time is studied through the use of an optimization procedure. The study is conducted by abstracting the sensor algorithm and its associated constraints into a simple mathematical formulation. An airbag fire objective function is constructed that integrates the fire-rate and fire-time requirements. The function requires the input of a single acceleration time history; it produces an output depending on the airbag fire condition. Numerical search of the optimal fire threshold curve is achieved through parameterizing this curve and applying a modified simplex search optimization algorithm that determines the optimal threshold function parameters without computing the complete objective function in the parameter space. Numerical results are given to show the effectiveness and potential difficulties with the automatic search scheme.
Technical Paper

Combustion Pressure Based Engine Management System

2000-03-06
2000-01-0928
Future emission regulations and customer needs require revolutionary new approaches to engine management systems. In the EC part-funded AENEAS program the partners Ricardo, Kistler and DaimlerChrysler formed a consortium to investigate the application of a new combustion pressure sensor concept and innovative algorithms for engine management systems. This paper describes the general scope and the basic concepts of the system.
Technical Paper

A Stochastic Approach for Occupant Crash Simulation

2000-04-02
2000-01-1597
Stochastic simulation is used to account for the uncertainties inherent to the system and enables the study of crash phenomenon. For analytical purposes, random variables such as material crash properties, angle of impact, human response and the like can be characterized using statistical models. The methodology outlined in this approach is based on using the information about the probability of random variables along with structural behavior in order to quantify the scatter in the structural response. Thus the analysis gives a more complete picture of the actual simulation. Practical examples for the use of this technique are demonstrated and an overview of this approach is presented.
Technical Paper

Empirical Noise Model for Power Train Noise in a Passenger Vehicle

1999-05-17
1999-01-1757
Power train noise reaches the interior through structureborne paths and through airborne transmission of engine casing noise. To determine transfer functions from vibration to interior noise a shaker was attached at the engine attachment points, with the engine removed. A simple engine noise simulator, with loudspeaker cones on its faces, was placed in the engine compartment to measure airborne transfer functions to interior noise. Empirical noise estimates, based on the incoherent sum of contributions for individual source terms times the appropriate transfer function, compared remarkably well with measured levels obtained from dynomometer tests. Airborne transmission dominates above 1.5kHz. At lower frequencies engine casing radiation and vibration contributions are comparable.
Technical Paper

Achievements and Exploitation of the AUTOSAR Development Partnership

2006-10-16
2006-21-0019
Reductions of hardware costs as well as implementations of new innovative functions are the main drivers of today's automotive electronics. Indeed more and more resources are spent on adapting existing solutions to different environments. At the same time, due to the increasing number of networked components, a level of complexity has been reached which is difficult to handle using traditional development processes. The automotive industry addresses this problem through a paradigm shift from a hardware-, component-driven to a requirement- and function-driven development process, and a stringent standardization of infrastructure elements. One central standardization initiative is the AUTomotive Open System ARchitecture (AUTOSAR). AUTOSAR was founded in 2003 by major OEMs and Tier1 suppliers and now includes a large number of automotive, electronics, semiconductor, hard- and software companies.
Technical Paper

System Integration for MOSA-Compliant Integrated Avionics Architectures

2023-03-07
2023-01-1003
MOSA (Modular Open System Approach) provides a framework for efficient and sustainable design of complex integrated systems. In domain of embedded technology, the MOSA as-is does a good job in identifying modular software and hardware frameworks required to establish a common baseline for generic open architecture. On the other hand, it does not cover physical aircraft integration, integration methodology and other constituent elements essential for design of robust interfaces and integrated embedded systems, which are owned by OEMs and their suppliers. The definition of open interfaces is a key constituent in definition of MOSA-compliant architectures. An efficient system integration lifecycle requires unambiguous interfacing among hosted functions. Open interfaces and Ethernet are core system integration technologies and should be integrated and configured with other software/hardware framework elements, to enable hard RT, real-time and soft-time application hosting.
X