Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Robust Compressor Model for AC System Simulation

2007-04-16
2007-01-0596
Simple component models are advantageous when simulating vehicle AC systems so that overall model complexity and computation time can be minimized. These models must be robust enough to avoid instability in the iteration method used for determining the AC system operating or “balance” point. Simplicity and stability are especially important when the AC system model is coupled with a vehicle interior model for studies of transient performance because these are more computationally intensive. This paper presents a semi-empirical modeling method for compressors based on dimensionless parameters. Application to some sample compressor data is illustrated. The model equations are simple to employ and will not introduce significant stability problems when used as part of a system simulation.
Technical Paper

Effects of Substrate Diameter and Cell Density FTP Performance

2007-04-16
2007-01-1265
An experiment was performed with a 1.3L catalytic converter design containing a front and rear catalyst each having a volume of 0.65 liters. This investigation varied the front catalyst parameters to study the effects of 1) substrate diameter, 2) substrate cell density, 3) Pd loading and 4) Rh loading on the FTP emissions on three different vehicles. Engine displacement varied from 2.4L to 4.7L. Eight different converters were built defined by a Taguchi L-8 array. Cold flow converter restriction results show the tradeoff in converter restriction between substrate cell density and substrate diameter. Vehicle FTP emissions show how the three vehicles are sensitive to the four parameters investigated. Platinum Group Metals (PGM) prices and Federal Test Procedure (FTP) emissions were used to define the emission value between the substrate properties of diameter and cell density to palladium (Pd) and rhodium (Rh) concentrations.
Technical Paper

Sunroof Buffeting Suppression Using a Dividing Bar

2007-04-16
2007-01-1552
This paper presents the results of CFD study on sunroof buffeting suppression using a dividing bar. The role of a dividing bar in side window buffeting case was illustrated in a previous study [8]. For the baseline model of the selected vehicle in this study, a very high level of sunroof buffeting, 133dB, has been found. The CFD simulation shows that the buffeting noise can be significantly reduced if a dividing bar is installed at the sunroof. A further optimization study on the dividing bar demonstrates that the peak buffeting level can be reduced to 123dB for the selected vehicle if the dividing bar is installed at its optimal location, 65% of the total length from the front edge of the sunroof. The peak buffeting level can be further reduced to 100dB if the dividing bar takes its optimal width 80mm, 15% of the total length of the sunroof for this vehicle, while staying at its optimal location.
Technical Paper

Water and Heat Balance in a Fuel Cell Vehicle with a Sodium Borohydride Hydrogen Fuel Processor

2003-06-23
2003-01-2271
The National Renewable Energy Laboratory (NREL) collaborated with Millennium Cell and DaimlerChrysler to study heat and water management in a sodium borohydride (NaBH4) storage/processor used to supply hydrogen to a fuel cell in an automotive application. Knowledge of heat and water flows in this system is necessary to maximize the storage concentration of NaBH4, which increases vehicle range. This work helps evaluate the NaBH4 system's potential to meet the FreedomCAR program technical target of 6 wt% hydrogen for hydrogen storage technologies. This paper also illustrates the advantages of integrating the NaBH4 hydrogen processor with the fuel cell.
Technical Paper

Bag Mini-Diluter System Diagnostics

2004-03-08
2004-01-1438
Automakers in the United States have started using bag mini-diluters (BMD) for developing, testing and certifying vehicles, to meet PZEV and SULEV regulation requirements. The BMD system which is a new technology developed by AIGER, is being used as an alternative to the traditional CFV/CVS system for accurate ultra low-level emission measurement. BMD system has shown to have considerable advantage over CFV/CVS system, especially at ULEV/SULEV emission levels. This paper details modifications and diagnostic checks conducted with the existing BMD system at the DaimlerChrysler Tech Center emissions facility, Auburn Hills, Michigan. This paper also discusses possible scenarios where the BMD system at DaimlerChrysler could give erroneous results due to system setup, optimization issues and equipment limitations.
Technical Paper

Overall Results: Phase I Ad Hoc Diesel Fuel Test Program

2001-03-05
2001-01-0151
The future of diesel-engine-powered passenger cars and light-duty vehicles in the United States depends on their ability to meet Federal Tier 2 and California LEV2 tailpipe emission standards. The experimental purpose of this work was to examine the potential role of fuels; specifically, to determine the sensitivity of engine-out NOx and particulate matter (PM) to gross changes in fuel formulation. The fuels studied were a market-average California baseline fuel and three advanced low sulfur fuels (<2 ppm). The advanced fuels were a low-sulfur-highly-hydrocracked diesel (LSHC), a neat (100%) Fischer-Tropsch (FT100) and 15% DMM (dimethoxy methane) blended into LSHC (DMM15). The fuels were tested on modern, turbocharged, common-rail, direct-injection diesel engines at DaimlerChrysler, Ford and General Motors. The engines were tested at five speed/load conditions with injection timing set to minimize fuel consumption.
Technical Paper

Advanced Engine Cooling Thermal Management System on a Dual Voltage 42V-14V Minivan

2001-05-14
2001-01-1742
Today the worldwide convergence towards stricter fuel consumption and emission regulations is pushing carmakers and suppliers into new fields of innovation. Valeo Engine Cooling, VEC, is contributing towards these goals by applying its thermal management system expertise in order to reduce fuel consumption and emissions by using an advanced engine cooling system that incorporated variable speed PWM fans, an electric water pump and an electric water control valve. The paper discusses the benefits in terms of engine cooling, fuel economy and emissions over the FTP drive cycle. The paper gives some examples of advanced engine cooling strategies based on a virtual, predictive metal temperature sensor that is used to actuate the electrical water pump at the desired flow rate. The electrical balance between the 42V pump and fans has also been optimized to reduce the vehicle electrical power consumption and to keep the coolant temperature close to 110°C.
Technical Paper

Oxygenates screening for AdvancedPetroleum-Based Diesel Fuels: Part 2. The Effect of Oxygenate Blending Compounds on Exhaust Emissions

2001-09-24
2001-01-3632
Adding oxygenates to diesel fuel has shown the potential for reducing particulate (PM) emissions in the exhaust. The objective of this study was to select the most promising oxygenate compounds as blending components in diesel fuel for advanced engine testing. A fuel matrix was designed to consider the effect of molecular structure and boiling point on the ability of oxygenates to reduce engine-out exhaust emissions from a modern diesel engine. Nine test fuels including a low-sulfur (∼1 ppm), low-aromatic hydrocracked base fuel and 8 oxygenate-base fuel blends were utilized. All oxygenated fuels were formulated to contain 7% wt. of oxygen. A DaimlerChrysler OM611 CIDI engine for light-duty vehicles was controlled with a SwRI Rapid Prototyping Electronic Control System. The base fuel was evaluated in four speed-load modes and oxygenated blends only in one mode. Each operating mode and fuel combination was run in triplicate.
Technical Paper

Oxygenates for Advanced Petroleum-Based Diesel Fuels: Part 1. Screening and Selection Methodology for the Oxygenates

2001-09-24
2001-01-3631
The overall program objectives were three fold: assess the benefits and limitations of oxygenated diesel fuels on engine performance and emissions identify oxygenates most suitable for potential use in future diesel formulations based on physico-chemical properties (e.g. flash point), toxicity, biodegradability and estimated cost of production perform limited emissions and performance testing of the oxygenated diesel blends select at least two oxygenated compounds for advanced engine testing In Part 1 of this program which is described in this paper, an extensive literature review was conducted to identify potential oxygenates for blending into diesel fuels. As many as 71 oxygenates were identified for the initial screening process. Based on a set of physical and chemical properties, a screening methodology was developed to select the 8 oxygenates that will be eligible for engine testing.
Technical Paper

Driver out-of-position injuries mitigation and advanced restraint features development

2001-06-04
2001-06-0069
Airbag-related out-of-position (OOP) injuries in automotive crash accident have drawn great attention by public in recent years. In the interim-final rule of Federal Motor Vehicle Safety Standards that NHTSA issued in May 2000, OOP static test becomes a mandatory requirement of new regulation and will be phased in starting from year 2003. Due to the complexities and constraints of vehicle design, such as extreme vehicle styling and packaging as well as multiple safety requirements, it is a great challenge for both restraint safety suppliers and automobile manufacturers work together to come up with proper designs to meet requirements of new regulation and provide additional protection for both in-position and OOP occupants at various vehicle crash scenarios. In this paper, the technique of developing advanced restraint system and mitigating the OOP injuries is described.
Technical Paper

Predicted vs. Actual Compensation in a Stamping Die

2001-10-16
2001-01-3108
Traditional methods used to produce a die set (from developing initial machining cutter paths through finalized die tryout to produce a part that meets design intent) begin with draw simulation and development. It is here, traditionally, that scientific evaluation of actual metal stretch and theoretical ideals end. In past programs, a designed part would be simulated for stretch and a development model created to include various die compensations (i.e. springback, overcrown, etc.) based on past experience for area and amount. At this point, the die is cut and undergoes a metamorphosis through die tryout to finally produce a quality part. This is currently an open loop system. This paper will focus on the differences in the predicted way the die should look and the actual outcome (after part buyoff).
Technical Paper

The New DaimlerChrysler 5.7L Hemi V-8 Engine: Design and Advanced Simulation Techniques

2002-10-21
2002-01-2816
For the 2003 model year DaimlerChrysler Corporation will launch a totally new 5.7L V-8 engine for applications of the Dodge Ram pick-up truck. The new engine was created largely within a digital environment using the latest computer aided design (CAD) and computer aided engineering (CAE) techniques and tools. Utilizing a co-located team of design engineers, designers, and CAE engineers enabled the simulations to impact the design from program inception to the assembly line, saving program time and investment. This paper describes the successful merging of design and advanced analysis techniques by highlighting examples throughout the new HEMI® program. Case studies include issues in the areas of structural optimization, engine loading, lubrication circuit, cooling circuit, and manufacturing.
Technical Paper

Performance Driver Information Systems, Enhancing the Fun-to-Drive Equation

2002-10-21
2002-21-0041
Most driver information systems offered in automobiles today display vehicle speed, fluid levels, fluid temperatures, and some basic diagnostic information (warnings, panel lamps). Optional driver information systems add to this list by offering fuel economy information, compass heading, outside temperature and other comfort and convenience related items. Very few provide information in regards to the real performance of the vehicle, its motion in 3-dimensional space, or the driver’s skill and performance. Making this information available to the driver can enhance the “fun-to-drive” aspects of driving.
Technical Paper

Perforation Corrosion Performance of Autobody Steel Sheet in On-Vehicle and Accelerated Tests

2003-03-03
2003-01-1238
The Auto/Steel Partnership Corrosion Project Team has completed a perforation corrosion test program consisting of on-vehicle field exposures and various accelerated tests. Steel sheet products with eight combinations of metallic and organic coatings were tested, utilizing a simple crevice coupon design. On-vehicle exposures were conducted in St. John's and Detroit for up to seven years to establish a real-world performance standard. Identical test specimens were exposed to the various accelerated tests, and the results were compared to the real-world standard. This report documents the results of these tests, and compares the accelerated test results (including SAE J2334, GM9540P, Ford APGE, CCT-I, ASTM B117, South Florida Modified Volvo, and Kure Beach (25-meter) exposures) to the on-vehicle tests. The results are compared in terms of five criteria: extent of corrosion, rank order of material performance, degree of correlation, acceleration factor, and control of test environment.
Technical Paper

Evaluation of Advanced Diesel Oxidation Catalyst Concepts: Part 2

2006-04-03
2006-01-0032
The development of diesel powered passenger cars is driven by the enhanced emission legislation. To fulfill the future emission limits there is a need for advanced aftertreatment devices. A comprehensive study was carried out focusing on the improvement of the DOC as one part of these systems, concerning high HC/CO conversion rates, low temperature light-off behaviour and high temperature aging stability, respectively. The first part of this study was published in [1]. Further evaluations using a high temperature DPF aging were carried out for the introduced systems. Again the substrate geometry and the catalytic coating were varied. The results from engine as well as vehicle tests show advantages in a highly systematic context by changing either geometrical or chemical factors. These results enable further improvement for the design of the exhaust system to pass the demanding emission legislation for high performance diesel powered passenger cars.
Technical Paper

Improving Direct Vehicle Exhaust Flow Measurement

2005-04-11
2005-01-0686
Measuring vehicle exhaust volumetric flow rate accurately and precisely is critical in calculating the correct vehicle modal and bag mini-diluter exhaust emission constituent masses. It is also instrumental in engine calibration practices. Currently, DaimlerChrysler's Emission and Certification Lab in Auburn Hills, Michigan utilizes constant volume sampling bag systems to certify vehicles but the automotive technological trend is heading toward the bag mini-diluter for greater precision at low emission levels. The bag mini-diluters, as well as the modal sampling system, used extensively in vehicle development testing, rely on exhaust flow rate measurement by means of a direct vehicle exhaust flow meter named E-Flow. The E-Flow has few limitations such as flow profile instability at low idle flow rates and reaction to resonating pressure waves in the exhaust system.
Technical Paper

Numerical Evaluation of TRL Barrier’s Compatibility Assessment Capability

2006-04-03
2006-01-1133
Barrier impacts are routinely used to estimate the impact response of vehicles in vehicle-to-vehicle crashes. One area of investigation is the detection of the secondary energy absorbing structures provided for under-/over-ride mitigation as a result of increased structural engagement -- improved geometric compatibility. The flat rigid barrier and the Transportation Research Laboratory’s (TRL) full width honeycomb barrier are commonly considered. In the present study, a vehicle-to-vehicle impact that exhibited no under-/over-ride condition was compared to finite element analysis of vehicle impacts to the two different barriers in order to evaluate their ability to detect the secondary energy absorbing structure. This study demonstrates that the rigid barrier and the TRL barrier yield similar quantitative information with regard to vehicle-to-vehicle crashes.
Technical Paper

Optimization Study for Sunroof Buffeting Reduction

2006-04-03
2006-01-0138
This paper presents the results of optimization study for sunroof buffeting reduction using CFD technology. For an early prototype vehicle as a baseline model in this study a high level of sunroof buffeting 133dB has been found. The CFD simulation shows that the buffeting noise can be reduced by installing a wind deflector at its optimal angle 40 degrees from the upward vertical line. Further optimization study demonstrates that the buffeting peak SPL can be reduced to 97dB if the sunroof glass moves to its optimal position, 50% of the total length of the sunroof from the front edge. For any other vehicles, the optimization procedure is the same to get the optimal parameters. On the other hand, however, this optimization study is only based on fluid dynamics principle without considering manufacturability, styling, cost, etc. Further work is needed to utilize the results in the production design.
Technical Paper

Overview of the European “Particulates” Project on the Characterization of Exhaust Particulate Emissions from Road Vehicles: Results for Heavy Duty Engines

2004-06-08
2004-01-1986
This paper presents an overview of the results on heavy duty engines collected in the “PARTICULATES” project, which aimed at the characterization of exhaust particle emissions from road vehicles. The same exhaust gas sampling and measurement system as employed for the measurements on light duty vehicles [1] was used. Measurements were made in three labs to evaluate a wide range of particulate properties with a range of heavy duty engines and fuels. The measured properties included particle number, with focus separately on nucleation mode and solid particles, particle active surface and total mass. The sample consisted of 10 engines, ranging from Euro-I to prototype Euro-V technologies. The same core diesel fuels were used as in the light duty programme, mainly differentiated with respect to their sulphur content. Additional fuels were tested by some partners to extend the knowledge base.
Technical Paper

PGM Optimization by Robust Design

2005-10-24
2005-01-3849
A Robust Engineering experiment was performed to determine the effects PGM loading and placement on the FTP emissions of a 4 cylinder 2.4L and two 8 cylinder 4.7L vehicles. 1.3L catalytic converters were used containing a front and rear catalyst of equal volume. The experiment is defined by a Taguchi L-8 array. Eight different combinations of catalyst PGM loadings were aged and evaluated. Results show that nmHC and NOx emissions are predominately affected by the PGM loading of the front catalyst. The rear catalyst is insensitive to either Pt or Pd which can be used at low concentrations. Results also compare the benefits of Pd and Rh to reduce emissions. Confirmation runs suggest that significant reductions in PGM cost can be achieved over baseline designs.
X