Refine Your Search

Topic

Author

Search Results

Technical Paper

Improving Low Frequency Torsional Vibrations NVH Performance through Analysis and Test

2007-05-15
2007-01-2242
Low frequency torsional vibrations can be a significant source of objectionable vehicle vibrations and in-vehicle boom, especially with changes in engine operation required for improved fuel economy. These changes include lower torque converter lock-up speeds and cylinder deactivation. This paper has two objectives: 1) Examine the effect of increased torsional vibrations on vehicle NVH performance and ways to improve this performance early in the program using test and simulation techniques. The important design parameters affecting vehicle NVH performance will be identified, and the trade-offs required to produce an optimized design will be examined. Also, the relationship between torsional vibrations and mount excursions, will be examined. 2) Investigate the ability of simulation techniques to predict and improve torsional vibration NVH performance. Evaluate the accuracy of the analytical models by comparison to test results.
Technical Paper

NVH Refinement of Diesel Powered Sedans with Special Emphasis on Diesel Clatter Noise and Powertrain Harshness

2007-05-15
2007-01-2378
NVH refinement of passenger vehicles is crucial to customer acceptance of contemporary vehicles. This paper describes the vehicle NVH development process, with specific examples from a Diesel sedan application that was derived from gasoline engine-based vehicle architecture. Using an early prototype Diesel vehicle as a starting point, this paper examines the application of a Vehicle Interior Noise Simulation (VINS) technique in the development process. Accordingly, structureborne and airborne noise shares are analyzed in the time-domain under both steady-state and transient test conditions. The results are used to drive countermeasure development to address structureborne and airborne noise refinement. Examples are provided to highlight the refinement process for “Diesel knocking” under idle as well as transient test conditions. Specifically, the application of VINS to understanding the influence of high frequency dynamic stiffness of hydro-mounts on Diesel clatter noise is examined.
Technical Paper

248mm Elliptical Torque Converter from DaimlerChrysler Corporation

2007-04-16
2007-01-0241
The need for efficient space utilization has provided a framework for the design of a 248mm family of torque converters that supports a wide choice of engine and transmission combinations. The axial length of the part and its weight have been substantially reduced while the performance range has been broadened without degradation of efficiency. The new converter operates in an expanded slipping clutch mode. It significantly contributes to the performance and fuel economy improvements of related vehicles. To meet the cost target, the comprehensive lineup and the resulting complexity have required a high level of component interchangeability. During the design phase, the manufacturing core competencies were scrutinized and process redundancies eliminated, both resulting in optimization of material selection and applicable technology.
Technical Paper

Sensitivity Analysis of Powertrain Cooling System Performance

2007-04-16
2007-01-0598
This paper identifies the difference in powertrain cooling system content levels using a nominal and a +3 Standard deviation maximum temperature design approach. Variation simulation analysis tools are used along with a 1-D cooling system performance model to predict resulting temperature distribution for different combinations of input variable populations. The analysis will show differential in powertrain cooling system content, mass, and impact to fuel economy for a nominal vs. +3 sigma design approach.
Technical Paper

Effect of Cross Flow on Performance of a PEM Fuel Cell

2007-04-16
2007-01-0697
A serpentine flow channel is one of the most common and practical channel layouts for a PEM fuel cell since it ensures the removal of water produced in a cell. While the reactant flows along the flow channel, it can also leak or cross to neighboring channels via the porous gas diffusion layer due to a high pressure gradient. Such a cross flow leads to effective water removal in a gas diffusion layer thus enlarging the active area for reaction although this cross flow has largely been ignored in previous studies. In this study, neutron radiography is applied to investigate the liquid water accumulation and its effect on the performance of a PEM fuel cell. Liquid water tends to accumulate in the gas diffusion layer adjacent to the flow channel area while the liquid water formed in the gas diffusion layer next to the channel land area seems to be effectively removed by the cross leakage flow between the adjacent flow channels.
Technical Paper

Robust Optimization of Engine Lubrication System

2007-04-16
2007-01-1568
The quality of engine lubrication depends upon how much oil is supplied and how the lubricant is pressurized to the lubricated components. These variables strongly affect the safe operation and lifespan of an engine. During the conceptual design stage of an engine, its lubrication system cannot be verified experimentally. It is highly desirable for design engineers to utilize computer simulations and robust design methodology in order to achieve their goal of optimizing the engine lubrication system. The heuristic design principle is a relatively routine resource for design engineers to pursue although it is time consuming and sacrifices valuable developing time. This paper introduces an unusual design methodology in which design engineers were involved in analyzing their own designs along with lubrication system analyst to establish a link between two sophisticated software packages.
Technical Paper

Vehicle Speed Prediction for Driver Assistance Systems

2004-03-08
2004-01-0170
A predictive automatic gear shift system is currently under development. The system optimizes the gear shift process, taking the conditions of the road ahead into account, such that the fuel consumption is minimized. An essential part of the system is a module that predicts the vehicle speed dynamics: This calculates a speed trajectory, i.e. the most probable vehicle speed the driver will desire for the upcoming section of the route. In the paper the theoretical background for predicting the vehicle speed, and simulation results of the predictive shift algorithm are presented.
Technical Paper

The New “7G-TRONIC” of Mercedes-Benz: Innovative Transmission Technology for Better Driving Performance, Comfort and Fuel Economy

2004-03-08
2004-01-0649
In September 2003, the Mercedes Car Group set another milestone by introducing the fifth generation of automatic transmissions developed and manufactured in-house since 1960. The world's first 7-speed automatic transmission 7G-TRONIC is featured in the Mercedes-Benz S, SL, CL and E-Classes with V8 gasoline engines. Deduced from the demands of the requirement specifications, the 5-speed automatic transmission was decisively improved; the result is a clear increase in spontaneity, agility, fuel economy, and driving comfort for the customer. And because of the harmony between the vehicle and its powertrain, excellent results in the areas of performance, reduced emissions, comfort, and acoustics are obtained.
Technical Paper

An Advanced Diesel Fuels Test Program

2001-03-05
2001-01-0150
This paper reports on DaimlerChrysler's participation in the Ad Hoc Diesel Fuels Test Program. This program was initiated by the U.S. Department of Energy and included major U.S. auto makers, major U.S. oil companies, and the Department of Energy. The purpose of this program was to identify diesel fuels and fuel properties that could facilitate the successful use of compression ignition engines in passenger cars and light-duty trucks in the United States at Tier 2 and LEV II tailpipe emissions standards. This portion of the program focused on minimizing engine-out particulates and NOx by using selected fuels, (not a matrix of fuel properties,) in steady state dynamometer tests on a modern, direct injection, common rail diesel engine.
Technical Paper

Lubricant Requirements of an Advanced Designed High Performance, Fuel Efficient Low Emissions V-6 Engine

2001-05-07
2001-01-1899
Modern high power density gasoline fueled engines place an ever-increasing demand on the engine lubricant. In this study, it is shown that advances in engine design to increase performance, improve fuel economy and lower emissions have outpaced the development of typical commercial engine lubricants. Advanced designed engines began to experience oil starvation as a result of a combination of driving cycles, oil quality and poor maintenance practices. The cause was traced to excessive increases in borderline pumping viscosity as measured by MRV TP-1 (ASTM D4684). Used oil analysis for MRV TP-1 showed viscosity greatly increased in excess of stay-in-grade requirements and in many cases the crankcase lubricant was solid at the temperature appropriate for its viscosity grade. However, at the same time CCS values were in grade or only slightly (1W grade) elevated.
Technical Paper

A Simple Approach to Selecting Automotive Body-in-White Primary-Structural Materials

2002-07-09
2002-01-2050
A simple strategy for building lightweight automobile body-in-whites (BIWs) is developed and discussed herein. Because cost is a critical factor, expensive advanced materials, such as carbon fiber composites and magnesium, must only be used where they will be most effective. Constitutive laws for mass savings under various loading conditions indicate that these materials afford greater opportunity for mass saving when used in bending, buckling or torsion than in tensile, shear or compression. Consequently, it is recommended that these advanced materials be used in BIW components subject to bending and torsion such as rails, sills, “A-B-C” pillars, etc. Furthermore, BIW components primarily subject to tension, compression, or shear, such as floor pans, roofs, shock towers, etc., should be made from lower cost steel. Recommendations for future research that are consistent with this strategy are included.
Technical Paper

Parameters Affecting Direct Vehicle Exhaust Flow Measurement

2003-03-03
2003-01-0781
As SULEV emission regulations approach, the bag mini-diluter (BMD) technology is gaining acceptance as a replacement for the existing constant volume sampler (CVS) for SULEV exhaust emission measurement and certification. The heart of the BMD system is the direct vehicle exhaust (DVE) flow measurement system. Due to the transient nature of vehicle exhaust during a standard FTP emission test cycle, the DVE must be capable of rapid and accurate response in order to track these varying exhaust flow rates. The DVE must also be robust enough to accurately measure flow rate despite variations in exhaust gas composition, pulsation effects, and rapid changes in both exhaust temperature and pressure. One of the primary DVE systems used on BMDs is the E-Flow, an ultrasonic flow meter manufactured by Flow Technologies, Inc.
Technical Paper

Estimation of the Effects of Vehicle Size and Mass on Crash-Injury Outcome through Parameterized Probability Manifolds

2003-03-03
2003-01-0905
One way to improve vehicle's fuel economy is to reduce its weight. Reducing weight, however has other consequences. One of these is reduced vehicle size. Almost invariably, lighter vehicles are smaller. Reducing vehicle weight has also been associated with a reduction in occupant protection; the lighter the vehicle, the greater the chance of injury when a crash occurs. For this study, a data-based model is used to evaluate the independent effects of size and weight. This model is constructed using the NASS database and information obtained from NCAP tests. The results indicate that although mass is the dominant factor, size also has an effect; some of the observed reduction in safety benefits associated with mass reduction is actually an effect of size reduction. The model is also used to evaluate the effects of varying stiffness.
Technical Paper

Development of the Direct Nonmethane Hydrocarbon Measurement Technique for Vehicle Testing

2003-03-03
2003-01-0390
The Automotive Industry/Government Emissions Research CRADA (AIGER) has been working to develop a new methodology for the direct determination of nonmethane hydrocarbons (DNMHC) in vehicle testing. This new measurement technique avoids the need for subtraction of a separately determined methane value from the total hydrocarbon measurement as is presently required by the Code of Federal Regulations. This paper will cover the historical aspects of the development program, which was initiated in 1993 and concluded in 2002. A fast, gas chromatographic (GC) column technology was selected and developed for the measurement of the nonmethane hydrocarbons directly, without any interference or correction being caused by the co-presence of sample methane. This new methodology chromatographically separates the methane from the nonmethane hydrocarbons, and then measures both the methane and the backflushed, total nonmethane hydrocarbons using standard flame ionization detection (FID).
Technical Paper

Vehicle Exhaust Emissions Simulator- A Quality Control Tool to evaluate the Performance of Low Level Emission Sampling and Analytical Systems

2003-03-03
2003-01-0391
As the standards for exhaust emissions have become more stringent, the quality control tools used to evaluate the performance of low level samplers and analyzers has become more important. The Vehicle Exhaust Emissions Simulator (VEES) was developed to evaluate the performance of vehicle or engine exhaust emissions sampling and analytical systems. The simulator emulates emissions from low-emitting gasoline vehicles by producing a simulated exhaust stream containing emission constituents (HC, CO, CO2, and NOx) injected via Mass Flow Controllers (MFCs). This paper discusses various applications of the VEES as a quality control tool for ULEV and SULEV testing. A comparison is made between the injected amount of exhaust species by the VEES and the amounts recovered by the different sampling systems. Different root cause scenarios are discussed as to the source of discrepancies between the results on the CVS and BMD for different driving cycles.
Technical Paper

Using a Vehicle Exhaust Emission Simulator (VEES) as a Cross Check Tool for Emission Test Cell Correlation

2005-04-11
2005-01-0687
It is becoming increasingly difficult to obtain good repeatability from running lab vehicle correlation testing, since vehicle variability is so significant at the Low ULEV and SULEV emissions levels. These new emission standards are becoming so stringent that it makes it very difficult to distinguish whether a problem is a result of vehicle variability, test cell sampling or the analytical system. A vehicle exhaust emission simulator (VEES) developed by Horiba, can simulate emissions from low emitting gasoline vehicles by producing tailpipe flow rates containing emissions constituents ( HC, CH4, CO, NOx, CO2 ) injected at the tailpipe flow stream via mass flow controllers.
Technical Paper

A Semi-Empirical Model for Fast Residual Gas Fraction Estimation in Gasoline Engines

2006-10-16
2006-01-3236
Accurate accounting for fresh charge (fuel and air) along with trapped RGF is essential for the subsequent thermodynamic analysis of combustion in gasoline engines as well as for on-line and real-time quantification as relevant to engine calibration and control. Cost and complexity of such techniques renders direct measurement of RGF impractical for running engines. In this paper, an empirically-based approach is proposed for on-line RGF, based on an existing semi-empirical model [1]. The model developed expands the range over which the semi-empirical model is valid and further improves its accuracy. The model was rigorously validated against a well correlated GT-POWER model as well as results from 1D gas exchange model [2]. Overall, using this model, RGF estimation error was within ∼1.5% for a wide range of engine operating conditions. The model will be implemented in Dyno development and calibration at Chrysler Group.
Technical Paper

Cam-phasing Optimization Using Artificial Neural Networks as Surrogate Models-Fuel Consumption and NOx Emissions

2006-04-03
2006-01-1512
Cam-phasing is increasingly considered as a feasible Variable Valve Timing (VVT) technology for production engines. Additional independent control variables in a dual-independent VVT engine increase the complexity of the system, and achieving its full benefit depends critically on devising an optimum control strategy. A traditional approach relying on hardware experiments to generate set-point maps for all independent control variables leads to an exponential increase in the number of required tests and prohibitive cost. Instead, this work formulates the task of defining actuator set-points as an optimization problem. In our previous study, an optimization framework was developed and demonstrated with the objective of maximizing torque at full load. This study extends the technique and uses the optimization framework to minimize fuel consumption of a VVT engine at part load.
Technical Paper

Development of an Engine Test Cell for Rapid Evaluation of Advanced Powertrain Technologies using Model-Controlled Dynamometers

2006-04-03
2006-01-1409
Current engine development processes typically involve extensive steady-state and simple transient testing in order to characterize the engine's fuel consumption, emissions, and performance based on several controllable inputs such as throttle, spark advance, and EGR. Steady-state and simple transient testing using idealistic load conditions alone, however, is no longer sufficient to meet powertrain development schedule requirements. Mapping and calibration of an engine under transient operation has become critically important. And, independent engine development utilizing accelerated techniques is becoming more attractive. In order to thoroughly calibrate new engines in accelerated fashion and under realistic transient conditions, more advanced testing is necessary.
Technical Paper

In Vehicle Exhaust Mount Load Measurement and Calculation

2006-04-03
2006-01-1258
Exhaust durability is an important measure of quality, which can be predicted using CAE with accurate mount loads. This paper proposes an innovative method to calculate these loads from measured mount accelerations. A Chrysler vehicle was instrumented with accelerometers at both ends of its four exhaust mounts. The vehicle was tested at various durability routes or events at DaimlerChrysler Proving Grounds. These measured accelerations were integrated to obtain their velocities and displacements. The differences in velocities and displacements at each mount were multiplied by its damping and stiffness rates to obtain the mount load. The calculation was conducted for all three translational directions and for all events. The calculated mount loads are shown within reasonable range. Along with CAE, it is suggested to explore this method for exhaust durability development.
X