Refine Your Search

Topic

Search Results

Technical Paper

Effects of Direct Injection Timing and Air Dilution on the Combustion and Emissions Characteristics of Stratified Flame Ignited (SFI) Hybrid Combustion in a 4-Stroke PFI/DI Gasoline Engine

2020-04-14
2020-01-1139
Controlled Auto-Ignition (CAI) combustion can effectively improve the thermal efficiency of conventional spark ignition (SI) gasoline engines, due to shortened combustion processes caused by multi-point auto-ignition. However, its commercial application is limited by the difficulties in controlling ignition timing and violent heat release process at high loads. Stratified flame ignited (SFI) hybrid combustion, a concept in which rich mixture around spark plug is consumed by flame propagation after spark ignition and the unburned lean mixture closing to cylinder wall auto-ignites in the increasing in-cylinder temperature during flame propagation, was proposed to overcome these challenges.
Technical Paper

Combustion Visualization and Experimental Study on Multi-Point Micro-Flame Ignited (MFI) Hybrid Lean-Burn Combustion in 4-Stroke Gasoline Engines

2020-09-15
2020-01-2070
Lean-burn combustion is an effective method for increasing the thermal efficiency of gasoline engines fueled with stoichiometric fuel-air mixture, but leads to an unacceptable level of high cyclic variability before reaching ultra-low nitrogen oxide (NOx) emissions emitted from conventional gasoline engines. Multi-point micro-flame ignited (MFI) hybrid combustion was proposed to overcome this problem, and can be can be grouped into double-peak type, ramp type and trapezoid type with very low frequency of appearance. This research investigates the micro-flame ignition stages of double-peak type and ramp type MFI combustion captured by high speed photography. The results show that large flame is formed by the fast propagation of multi-point flame occurring in the central zone of the cylinder in the double-peak type. However, the multiple flame sites occur around the cylinder, and then gradually propagate and form a large flame accelerated by the independent small flame in the ramp type.
Journal Article

Experimental Study on High-Load Extension of Gasoline/PODE Dual-Fuel RCCI Operation Using Late Intake Valve Closing

2017-03-28
2017-01-0754
The dual-fuel Reactivity Controlled Compression Ignition (RCCI) combustion could achieve high efficiency and low emissions over a wide range of operating conditions. However, further high load extension is limited by the excessive pressure rise rate and soot emission. Polyoxymethylene dimethyl ethers (PODE), a novel diesel alternative fuel, has the capability to achieve stoichiometric smoke-free RCCI combustion due to its high oxygen content and unique molecule structure. In this study, experimental investigations on high load extension of gasoline/PODE RCCI operation were conducted using late intake valve closing (LIVC) strategy and intake boosting in a single-cylinder, heavy-duty diesel engine. The experimental results show that the upper load can be effectively extended through boosting and LIVC with gasoline/PODE stoichiometric operation.
Technical Paper

First-Principles Research on Adsorption of NOx on Pt Cluster and BaO Cluster Supported by γ-Al2O3 (110) Surface

2020-04-14
2020-01-0357
Lean NOx trap (LNT) is a great potential NOx abatement method for lean-burn gasoline engines in consideration of exhaust aftertreatment cost and installation space. NOx firstly is adsorbed on storage sites during the lean-burn period, then reduced to N2 under catalysis of the catalyst sites in the rich-burn phase. There must be a spillover of NOx species between both types of sites. For a better understanding of this spillover process of NOx species between Pt (as the catalytic center) and BaO sites (as storage components in commercial catalyst), this work focused on the vital first step of spillover, the adsorption of NOx on clean substrate surface (γ-Al2O3 (110) surface) and Ba\Pt cluster supported by the surface. Based on first principles software VASP (Vienna Ab-initio Simulation Package), the most stable adsorption structures of NO with Pt3 clusters and (BaO)3 clusters on carrier γ- Al2O3 (110) surface were confirmed and the adsorption energy of these structures were compared.
Journal Article

The Effects of EGR and Injection Timing on the Engine Combustion and Emission Performances Fueled by Butanol-Diesel Blends

2012-04-01
2011-01-2473
The combustion and emission characteristics of a diesel engine running on butanol-diesel blends were investigated in this study. The blending ratio of n-butanol to diesel was varied from 0 to 40 vol% using an increment of 10 vol%, and each blend was tested on a 2.7 L V6 common rail direction injection diesel engine equipped with an EGR system. The test was carried out under two engine loads at a constant engine speed, using various combinations of EGR ratios and injection timings. Test results indicate that n-butanol addition to engine fuel is able to substantially decrease soot emission from raw exhaust gas, while the change in NOx emissions varies depending on the n-butanol content and engine operating conditions. Increasing EGR ratio and retarding injection timing are effective approaches to reduce NOx emissions from combustion of n-butanol-diesel blends.
Journal Article

Thermodynamic Analysis of a Novel Combined Power and Cooling Cycle Driven by the Exhaust Heat Form a Diesel Engine

2013-04-08
2013-01-0858
A novel combined power and cooling cycle based on the Organic Rankine Cycle (ORC) and the Compression Refrigeration Cycle (CRC) is proposed. The cycle can be driven by the exhaust heat from a diesel engine. In this combined cycle, ORC will translate the exhaust heat into power, and drive the compressor of CRC. The prime advantage of the combined cycle is that both the ORC and CRC are trans-critical cycles, and using CO₂ as working fluid. Natural, cheap, environmentally friendly, nontoxic and good heat transfer properties are some advantages of CO₂ as working fluid. In this paper, besides the basic combined cycle (ORC-CRC), another three novel cycles: ORC-CRC with an expander (ORC-CRCE), ORC with an internal heat exchanger as heat accumulator combined with CRC (ORCI-CRC), ORCI-CRCE, are analyzed and compared.
Technical Paper

A Study of Performance Development and Optimization of 6106 Diesel Engine

2008-06-23
2008-01-1725
Working process of diesel engine refers to airflow, turbocharger, fuel injection, combustion, heat transfer and chemical reaction powers etc. Hence, it influences power output, fuel consumption, combustion noise and emissions, moreover directly influences reliability and durability of diesel engine. The working process of 6106 diesel engine is simulated by large universal internal combustion engine working process numerical simulation software GT-Power in this paper, and the effects of compression ratio, fuel supply advance angle and valve timing system on performance of diesel engine are analyzed. When valve-timing system is studied, the influence of intake valve close timing, exhaust valve open timing and valve overlap angle on performance are analyzed. On different operating conditions, the different timing of intake close and exhaust open, valve overlap were computed and analyzed. Finally, at different engine conditions, various optimum results were obtained.
Technical Paper

Simulation of a Porous Medium (PM) Engine Using a Two-Zone Combustion Model

2008-06-23
2008-01-1516
Porous medium (PM) engine was a new type engine based on the technique of combustion in porous medium, which can realize homogeneous and stable combustion. In this paper, the combustion and working processes of a specific PM engine was simulated by a two-zone model considering the influences of the mass distribution, heat transfer from the cylinder wall, mass exchange between zones and the heat transfer in porous medium. Influences of operating parameters, e.g. intake temperature and pressure, compression ratio, the excess air ratio on the performance of the PM engine were discussed. It is found out that the porous medium, acting as a heat recuperator, can significantly enhance the evaporation of liquid fuel and preheat the mixture, which promotes the ignition and combustion in the cylinder; and that the initial PM temperature and the compression ratio are critical factors controlling the compression ignition of the mixture.
Technical Paper

Study on Methods of Coupling Numerical Simulation of Conjugate Heat Transfer and In-Cylinder Combustion Process in GDI Engine

2017-03-28
2017-01-0576
Wall temperature in GDI engine is influenced by both water jacket and gas heat source. In turn, wall temperature affects evaporation and mixing characteristics of impingement spray as well as combustion process and emissions. Therefore, in order to accurately simulate combustion process, accurate wall temperature is essential, which can be obtained by conjugate heat transfer (CHT) and piston heat transfer (PHT) models based on mapping combustion results. This CHT model considers temporal interaction between solid parts and cooling water. This paper presents an integrated methodology to reliably predict in-cylinder combustion process and temperature field of a 2.0L GDI engine which includes engine head/block/gasket and water jacket components. A two-way coupling numerical procedure on the basis of this integrated methodology is as follows.
Technical Paper

Control-Oriented Modeling of Soot Emissions in Gasoline Partially Premixed Combustion with Pilot Injection

2017-03-28
2017-01-0511
In this paper, a control-oriented soot model was developed for real-time soot prediction and combustion condition optimization in a gasoline Partially Premixed Combustion (PPC) Engine. PPC is a promising combustion concept that achieves high efficiency, low soot and NOx emissions simultaneously. However, soot emissions were found to be significantly increased with high EGR and pilot injection, therefore a predictive soot model is needed for PPC engine control. The sensitivity of soot emissions to injection events and late-cycle heat release was investigated on a multi-cylinder heavy duty gasoline PPC engine, which indicated main impact factors during soot formation and oxidation processes. The Hiroyasu empirical model was modified according to the sensitivity results, which indicated main influences during soot formation and oxidation processes. By introducing additional compensation factors, this model can be used to predict soot emissions under pilot injection.
Technical Paper

A Numerical Study on Combustion and Emission Characteristics of Marine Engine through Miller Cycle Coupled with EGR and Water Emulsified Fuel

2016-10-17
2016-01-2187
The combustion in low-speed two-stroke marine diesel engines can be characterized as large spatial and temporal scales combustion. One of the most effective measures to reduce NOx emissions is to reduce the local maximum combustion temperature. In the current study, multi-dimensional numerical simulations have been conducted to explore the potential of Miller cycle, high compression ratio coupled with EGR (Exhaust Gas Recirculation) and WEF (water emulsified fuel) to improve the trade-off relationship of NOx-ISFC (indicated specific fuel consumption) in a low-speed two-stroke marine engine. The results show that the EGR ratio could be reduced combined with WEF to meet the Tier III emission regulation. The penalty on fuel consumption with EGR and WEF could be offset by Miller cycle and high geometric compression ratio.
Technical Paper

Effects of Different Turbocharging Systems on Performance in a HD Diesel Engine with Different Emission Control Technical Routes

2016-10-17
2016-01-2185
In this work, both the ‘SCR-only’ and ‘EGR+SCR’ technical routes are compared and evaluated after the optimizations of both injection strategy and turbocharging system over the World Harmonized Stationary Cycle (WHSC) in a heavy duty diesel engine. The exhaust emissions and fuel economy performance of different turbocharging systems, including wastegate turbocharger (WGT), variable geometry turbocharger (VGT), two-stage fixed geometry turbocharger (WGT+FGT) and two-stage variable geometry turbocharger (VGT+FGT), are investigated over a wide EGR range. The NOx reduction methods and EGR introduction strategies for different turbocharger systems are proposed to improve the fuel economy. The requirement on turbocharging system and their potential to meet future stringent NOx and soot emission regulations are also discussed in this paper.
Technical Paper

Experimental and Modelling Investigations of the Gasoline Compression Ignition Combustion in Diesel Engine

2017-03-28
2017-01-0741
In this work the gasoline compression ignition (GCI) combustion characterized by both premixed gasoline port injection and gasoline direct injection in a single-cylinder diesel engine was investigated experimentally and computationally. In the experiment, the premixed ratio (PR), injection timing and exhaust gas recirculation (EGR) rate were varied with the pressure rise rate below 10 bar/crank angle. The experimental results showed that higher PR and earlier injection timing resulted in advanced combustion phasing and improved thermal efficiency, while the pressure rise rates and NOx emissions increased. Besides, a lowest ISFC of 176 g/kWh (corresponding to IMEP =7.24 bar) was obtained, and the soot emissions could be controlled below 0.6 FSN. Despite that NOx emission was effectively reduced with the increase of EGR, HC and CO emissions were high. However, it showed that GCI combustion of this work was sensitive to EGR, which may restrict its future practical application.
Technical Paper

Effects of EGR and Injection Strategies on the Performance and Emissions of a Two-Stroke Marine Diesel Engine

2017-10-08
2017-01-2249
Clean combustion is critical for marine engines to meet the Tier III emission regulation. In this paper, the effects of EGR and injection strategies (including injection pressure, injection timing as well as multiple injection technology) on the performance and emissions of a 2-stroke, low speed marine diesel engine were investigated by using computational fluid dynamics (CFD) simulations to reach the IMO Tier III NOx emissions target and reduce the fuel consumption rate. Due to the large length scale of the marine engine, RANS simulation was performed in combination with the CTC-SHELL combustion model. Based on the simulation model, the variation of the cylinder pressure curve, the average temperature in the cylinder, the combustion heat release rate and the emission characteristics were studied.
Technical Paper

A Hybrid Combustion Control Strategy for Heavy Duty Diesel Engines Based on the Technologies of Multi-Pulse Injections, Variable Boost Pressure and Retarded Intake Valve Closing Timing

2011-04-12
2011-01-1382
Combustion control strategy for high efficiency and low emissions in a heavy duty (H D) diesel engine was investigated experimentally in a single cylinder test engine with a common rail fuel system, EGR (Exhaust Gas Recirculation) system, boost system and retarded intake valve closing timing actuator. For the operation loads of IMEPg (Gross Indicated Mean Effective Pressure) less than 1.1 MPa the low temperature combustion (LTC) with high rate of EGR was applied. The fuel injection modes of either single injection or multi-pulse injections, boost pressure and retarded intake valve closing timing (RIVCT) were also coupled with the engine operation condition loads for high efficiency and low emissions. A higher boost pressure played an important role in improving fuel efficiency and obtaining ultra-low soot and NOx emissions.
Technical Paper

Experimental Comparison between Stratified Flame Ignition and Micro Flame Ignition in a Gasoline SI-CAI Hybrid Combustion Engine

2017-03-28
2017-01-0737
Controlled Auto-Ignition (CAI), also known as Homogeneous charge compression ignition (HCCI), has been the subject of extensive research because of their ability to providing simultaneous reduction in fuel consumption and NOx emissions in a gasoline engine. However, due to its limited operation range, combustion mode switching between CAI and spark ignition (SI) combustion is essential to cover the overall operational range of a gasoline engine for passenger car applications. Previous research has shown that the SI-CAI hybrid combustion has the potential to control the ignition timing and heat release process during both steady state and transient operations. However, it was found that the SI-CAI hybrid combustion process is often characterized with large cycle-to-cycle variations, due to the flame instability at high dilution conditions.
Technical Paper

Development and Application Experience of Diesel Catalytic Converters

1994-09-01
941773
This paper mainly deals with the harmful emission control problem of the diesel engine. Many research works have been carried out on the catalytic conversion of diesel emissions. First, a few kinds of catalyst are prepared, selected by Thermogravimetric Analysis (TGA) and Differential Thermal Analysis (DTA). Three types of catalytic converter are developed. Engine bench tests on these converters loaded with selected catalysts are made. Testing contents are: (1) conversion rate of harmful gases; (2) reduction effect of exhaust smoke; (3) resistant performance of converters and their influences on the engine, etc. Finally, through comparison, the effective catalytic converter is installed on a folklift truck for testing and durability examination. Testing results show that the catalytic converter has higher conversion rate on gaseous emissions, especially for CO and NOx. After two months running, the conversion rates basically keep the original level.
Technical Paper

1D-3D Coupled Analysis for Motor Thermal Management in an Electric Vehicle

2022-03-29
2022-01-0214
Motor thermal management of electric vehicles (EVs) is becoming more significant due to its close relations to vehicle aerodynamic performance and power consumption, while computer aided engineering (CAE) plays an important role in its development. A 1D-3D coupled model is established to characterize transient thermal performance of the motor in an electric vehicle on a high performance computer (HPC) platform. The 1D motor thermal management model is integrated with the 1D powertrain model, and a 3D thermal model is established for the motor, while online data exchange is realized between the 1D and 3D models. The 1D model gives boundaries such as inlet coolant temperature, mass flowrate and motor heat generation to the 3D model, while the 3D model gives back boundaries such as heat transfer to coolant simultaneously. Transient simulations are performed for the 140kph(20°C) driving cycle, and the model is calibrated with experimental data.
Technical Paper

Numerical Optimization of the Piston Bowl Geometry and Investigation of the Key Geometric Parameters for the Dual-Mode Dual-Fuel (DMDF) Concept under a Wide Load Range

2022-03-29
2022-01-0782
Focusing on the dual-mode dual-fuel (DMDF) combustion concept, a combined optimization of the piston bowl geometry with the fuel injection strategy was conducted at low, mid, and high loads. By coupling the KIVA-3V code with the enhanced genetic algorithm (GA), a total of 14 parameters including the piston bowl geometric parameters and the injection parameters were optimized with the objective of meeting Euro VI regulations while improving the fuel efficiency. The optimal piston bowl shape coupled with the corresponding injection strategy was summarized and integrated at various loads. Furthermore, the effects of the key geometric parameters were investigated in terms of organizing the in-cylinder flow, influencing the energy distribution, and affecting the emissions. The results indicate that the behavior of the DMDF combustion mode is further enhanced in the aspects of improving the fuel economy and controlling the emissions after the bowl geometry optimization.
Technical Paper

Analysis of Energy and Exergy Distribution for Improving Fuel Economy of Marine Low-speed Two-stroke Diesel Engine

2022-03-29
2022-01-0392
Increasingly strict emission regulations and unfavorable economic climate bring severe challenges to the energy conservation of marine low-speed engine. Besides traditional methods, the energy and exergy analysis could acknowledge the losses of fuel from a global perspective to further improve the engine efficiency. Therefore, the energy and exergy analysis is conducted for a marine low-speed engine based on the experimental data. Energy analysis shows the exhaust gas occupies the largest proportion of all fuel energy waste, and it rises with the increment of engine load. The heat transfer consumes the second largest proportion, while it is negatively correlated to engine load. The energy analysis indicates that the most effective way to improve the engine efficiency is to reduce the energy wasted by exhaust gas and heat transfer. However, the latter exergy analysis demonstrates that there are other effective approaches to improve the engine efficiency.
X