Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Thermal Validation and Design Study of Fast Filling of Hydrogen Tank

2022-03-29
2022-01-0688
For fuel cell vehicles, it is essential that the hydrogen tank be both compact and have sufficient hydrogen to ensure reasonable driving range for which there is a need to pressurize the hydrogen in the tank at levels much higher than that of atmospheric pressure. Furthermore, fast filling is an important consideration in order to minimize time to refuel hydrogen in the tank. In this article, we investigate a Computational Fluid Dynamics (CFD) methodology to see whether we can simulate the fast filling of the hydrogen tank. We performed simulations on an existing validation case using coupled simulation approach between the PowerFLOW® flow solver and PowerTHERM® the thermal solver. For an accurate simulation at elevated pressure levels, we implemented a real gas behavior that is more accurate than the ideal gas equation of state for under these conditions. We observe good agreement with experimental data for both bulk and local variations in temperature.
Technical Paper

Thermal Validation Study of AdBlue® Melting for Off Highway Vehicles

2022-03-29
2022-01-0560
Selective Catalytic Reduction (SCR) is a process where one injects an aqueous solution of urea into a diesel exhaust system in order to reduce NOx emissions. The urea solution known as AdBlue® or Diesel Exhaust Fluid (DEF) is stored in a DEF Tank that can under cold weather conditions freeze over. Since AdBlue® is unusable while frozen, we use heaters installed in the tanks to melt AdBlue® with government regulations mandating time required to melt AdBlue® in the tank. In this article, we investigate whether a CFD (Computational Fluid Dynamics) based methodology can accurately evaluate time required in melting AdBlue® for a given DEF Tank and heater coil design for a production vehicle as per standard testing procedure. Simulations used a coupled methodology with PowerFLOW® as the flow solver and PowerTHERM® as the thermal solver. The flow simulation did require an accurate modelling of phase change from solid to liquid for AdBlue®.
Technical Paper

Use of Accurate Simulation Workflows to Optimize Waste Heat Recovery from Thermoacoustic Engines

2024-04-09
2024-01-2590
Thermoacoustic heat engines convert heat into useful energy by generating acoustic waves from a heat source that can then be extracted as useful work. These engines are inexpensive, robust, versatile, and capable of extracting energy from a wide variety of heat sources ranging from waste heat from power plants to exhaust heat of vehicles. In this article, our investigation focuses on using simulation workflows to improve the performance of thermoacoustic engines. We begin with validating the workflows with published data for both traveling wave and standing wave thermoacoustic engines. Following that, we investigate the effect of changing the working fluid and the operating pressure to increase acoustic power. This study uses a coupled PowerFLOW™ and PowerTHERM™ methodology to simulate the buoyancy-driven flows that generate acoustic pressure waves. Good correlations were observed for both traveling and standing wave thermoacoustic engines.
X