Refine Your Search

Topic

Search Results

Viewing 1 to 16 of 16
Technical Paper

Mathematical Modeling of the Longitudinal Motion of a Vehicle with a Continuously Variable Transmission

2021-09-21
2021-01-1237
The Continuously Variable Transmission (CVT) is a widely adopted transmission system. The operation of a CVT is simple, but successfully foretelling the longitudinal motion of a vehicle that utilizes this transmission is sophisticated. As a result, different vehicles taking part in BAJA-SAE competitions were developed using various strategies to model the vehicle’s longitudinal dynamics and CVT operation. This article aims to provide a tool for obtaining a quantitative estimate of the longitudinal performance of a CVT equipped vehicle and for the selection of an optimal drive-train gear ratio for such a vehicle. To this end, this article proposes a novel, relatively simple, and reasonably accurate mathematical approach for modeling the longitudinal motion of a vehicle utilizing a CVT, which was developed by a novel integration of existing vehicle dynamics concepts.
Technical Paper

Optimisation of Expansion Ratio of an Advanced Compressed Air Engine Kit

2016-04-05
2016-01-1283
Worldwide, research is going on numerous types of engines that practice green and alternative energy such as natural gas engines, hydrogen engines, and electric engines. One of the possible alternatives is the air powered car. Air is abundantly available and can be effortlessly compressed to higher pressure at a very low cost. After the successful development of Compressed Air Engines, engineers shifted their focus in making this technology cost effective and feasible. This led to advancement in the field of pneumatics that is advanced Compressed Air Engine Kit (used for conversion of a small-two stroke SI engine to Compressed Air Engine) where its frugality and compatibility is kept at high priority. This research is in continuation with our previous project of development of an advanced Compressed Air Engine kit and optimisation of injection angle and injector nozzle area for maximum performance.
Technical Paper

Numerical Investigation on Aerodynamic Effects of Vanes and Flaps on Automotive Underbody Diffusers

2017-09-19
2017-01-2163
The automotive underbody diffuser is an expansion device which works by speeding up the air flowing underneath a vehicle. This reduces the pressure below the vehicle thereby increasing downforce. When designed properly, it can lead to a massive gain in downforce and even a reduction in drag. However, a majority of the research and development is restricted to motorsport teams and supercar manufacturers and is highly secretive. Most of the publicly available research has been done for very simple shapes (bluff bodies) to study the effects of ground clearance and rake angle. Very little research has been done for complex geometries with vanes, flaps and vortex generators. This paper aims to investigate the effects of the addition of vanes/strakes and flaps, their location as well as angle, on diffuser performance. Computational Fluid Dynamics simulations have been carried out using three dimensional, steady state RANS equations with the k-ε turbulence model on STAR CCM+ V9.06.
Technical Paper

Study of Starting Friction during the Running of Plain Journal Bearing under Hydrodynamic Lubrication Regime

2018-04-03
2018-01-0838
Study of starting friction during the running of the engineering application has an important role in designing them, especially working at low speed and high load conditions. A significant portion of research and development today is concentrated on saving the energy by reducing the friction. The present paper addresses the measurement technique and analysis of the starting friction during the running of the journal bearing. The experiments were performed during the hydrodynamic lubrication regime using SAE 15W-30 lubricating oil. A journal bearing having journal diameter as 22 mm, length/diameter ratio 1 and 0.027 mm radial clearance has been designed and fabricated to test the starting friction. Analysis of starting friction and average friction torque during the running of journal bearing was done at 900, 1150, 1400, 1650, 1900, 2150 and 2400 revolution per minute (rpm) speed of the journal at load values of 250, 400 and 500 N.
Technical Paper

Three Dimensional CFD Analysis on Aerodynamic Drag Reduction of a Bluff Tractor Trailer Body using Vortex Generators

2013-09-24
2013-01-2458
This paper presents a CFD analysis for drag reduction of a Class 8 Tractor-Trailer arrangement. A three dimensional bluff body model of the truck is simulated for a zero degree yaw angle at a speed of 50 miles per hour for a Reynolds Number of 3.3 million. In this paper, the role of vortex generators is investigated for overall drag reduction of the body. The key areas of interest for lowering the drag coefficient are the tractor-trailer gap and the trailer end. The designing of the body was done on DS SolidWorks whereas the CFD simulations were performed on commercial software Ansys Fluent. The Standard k-ε turbulence model was chosen for the simulation while the convergence criterion for the residuals was set at 10−6. The simple bluff body showed a drag coefficient of 1.654. The first design iteration involved increasing the tractor frontal area which resulted in a reduction of 4% in the drag coefficient.
Technical Paper

Automotive Composites and Polymer Material Selection for Fairing of a Human Powered Vehicle Using Multi-Attribute Decision Making Methodology

2016-04-05
2016-01-0526
Vehicle performance is highly dependent on the design and material used. Fairing of a Human Powered Vehicle (HPV) is responsible for the reduction in the aerodynamic drag force and its material determines the overall weight and the top speed of the vehicle. Selection of material for fairings depends on various physical, mechanical and manufacturing properties along with practical considerations like availability of material. Today, an ever-increasing variety of composite materials and polymers are available, each of them possessing their own characteristics, applications, advantages and limitations. Many automotive composites are used for manufacturing fairings. Materials like Carbon fiber, Glass fiber (E glass, S glass), Aramid fiber (Kevlar 29, Kevlar 49) are some of the viable options that have been used in the past for manufacturing fairing of HPVs.
Technical Paper

Study on Fluidic Thrust Vectoring Techniques for Application in V/STOL Aircrafts

2015-09-15
2015-01-2423
The art and science of thrust vectoring technology has seen a gradual shift towards fluidic thrust vectoring techniques owing to the potential they have to greatly influence the aircraft propulsion systems. The prime motive of developing a fluidic thrust vectoring system has been to reduce the weight of the mechanical thrust vectoring system and to further simplify the configuration. Aircrafts using vectored thrust rely to a lesser extent on aerodynamic control surfaces such as ailerons or elevator to perform various maneuvers and turns than conventional-engine aircrafts and thus have a greater advantage in combat situations. Fluidic thrust vectoring systems manipulate the primary exhaust flow with a secondary air stream which is typically bled from the engine compressor or fan. This causes the compressor operating curve to shift from the optimum condition, allowing the optimization of engine performance. These systems make both pitch and yaw vectoring possible.
Technical Paper

Flow Simulation and Theoretical Investigation on Aerodynamics of NACA-2415 Aerofoil at Low Reynolds Number

2015-09-15
2015-01-2576
The Aerofoil theory along with its design has integrated itself into the vast areas of applications ranging from Automobile, Aeronautical, Wind Turbine, Micro-Vehicles, UAVs applications. In this paper, knowing the intricacy of the airfoil's applications, A MATLAB Code for NACA-2415 Airfoil is developed and a Model with dimensions c=180mm, w=126mm, tmax=27mm is generated. The model is then subjected to Flow Simulation with various input parameters: Reynolds Numbers taken are- (REN-1) 105 and (REN-2) 2×105 [Laminar External Flow], Angles of attack taken are-0°, 4°, 8°, 12°. The pressure and velocity distribution along the airfoil sketch curve are graphed qualitatively, emphasizing on the flow separation leading to the transition from laminar to turbulent flow. The various aerodynamics characteristic curves for coefficient of pressure, coefficient of lift and coefficient of drag are plotted against different angle of attacks for REN-1 and REN-2.
Technical Paper

Optimization Techniques to Improve the Efficiency of Regenerative (Magnetic) Braking Systems

2015-04-14
2015-01-1210
At present, vast numbers of problems are triggered due to growing global energy crisis and rising energy costs. Since, on-road vehicles constitute the majority share of transportation; any energy losses in them will have a direct effect on the overall global energy scenario. Most of the energy lost is dissipated from the exhaust, cooling, and lubrication systems, and, most importantly, in the braking system. About 6% of the total energy produced is lost with the airstream in form of heat energy when brakes are applied. Thus, various technological systems need to be developed to conserve energy by minimize energy losses while application of brakes. Regenerative Braking is one such system or an energy recovery mechanism causing the vehicle to decelerate by converting its kinetic energy into another form (usually electricity), which further can be used either immediately or stored until needed.
Technical Paper

Friction and Sliding Wear Characterization of Ion Chrome Coating

2014-04-01
2014-01-0946
The functions of a piston ring are to seal off the combustion pressure, to distribute and control the oil, to transfer heat and to stabilize the piston. Most piston rings and metallic sealing rings for modern application where running conditions are severe, require some form of coating to minimise abrasion and corrosion. The piston ring coating improves the life of engine as well as fuel efficiency. In this study, physical vapour deposition (ion chrome plating) was investigated; plates with similar composition as the piston ring material were prepared by the casting process using induction arc furnace and sand mould. Wear test of the coating was conducted on pin on disc machine under dry conditions. The wear rate was calculated using mass loss methods on an electronic balance having least count of 1× 10−4 g.
Technical Paper

Optimization of Race Car Front Splitter Placement Using CFD

2019-12-30
2019-01-5097
The behavior of flow over an automobile’s body has a large effect on vehicle performance, and automobile manufacturers pay close attention to the minimal of the details that affect the performance of the vehicle. An imbalance of downforce between the front and rear portion of the vehicle can lead to significant performance hindrances. Worldwide efforts have been made by leading automobile manufacturers to achieve maximum balanced downforce using aerodynamic elements of vehicle. One such element is the front splitter. This study aims to analyze the aerodynamic performance of automobile at various splitter overhang lengths using Computational Fluid Dynamics (CFD). For the purpose of analysis, a three-dimensional (3D) CFD study was undertaken in ANSYS Fluent using the realizable k-ε turbulence model, based on the 3D compressible Reynolds-Averaged Navier-Stokes (RANS) equations.
Technical Paper

Aerodynamic Effect of Aspect Ratio of Spherical Depressions on the Bonnet of Hatchback Cars

2019-12-30
2019-01-5096
Flow separation is one of the primary causes of increase in form drag in vehicles. This phenomenon is also visible in the case of lightweight vehicles moving at high speed, which greatly affects their aerodynamics. Spherical depressions maybe used to delay the flow separation and decrease drag in such vehicles. This study aims for optimization of aspect ratio (AR) of spherical depressions on hatchback cars. Spherical depressions were created on the bonnet of a generalized light vehicle Computer-Aided Design (CAD) model. The diameter of each spherical depression was set constant at 60 mm, and the center-to-center distance between consecutive spherical depressions is fixed at 90 mm. The AR of spherical depressions was taken as the parameter that was varied in each model. ARs 2, 4, 6, and 8 were considered for the current investigation. Three-dimensional (3D) CFD analyses were then performed on each of these models using a validated computational model.
Technical Paper

Effect of Fender Coverage Angle on the Aerodynamic Drag of a Bicycle

2019-10-11
2019-01-5086
While riding cycles, cyclists usually experience an aerodynamic drag force. Over the years, there has been a global effort to reduce the aerodynamic drag of a cycle. Fenders affect the aerodynamic drag of a cycle to a large extent, and fender coverage has a pronounced effect on the same. In this article, various fender coverage angles, varying from 60° to 270°, were studied to predict the aerodynamic drag with the help of a validated CFD model in SolidWorks Flow Simulation. The model was based on the Favre-Averaged Navier-Stokes (FANS) equations solved using the k-ɛ model. It was predicted that aerodynamic drag coefficient reduced fender coverage angle up to 135°, and thereafter started increasing. Analyses were carried out at velocities of 6 m/s, 8 m/s and 10 m/s and the results were found to be similar, with a minimum aerodynamic drag coefficient at 135° occurring in all the cases under study.
Technical Paper

Development of a Dedicated Hydrogen Port Injection Kit for Small Engines

2015-09-29
2015-01-2881
The danger posed by climate change and the striving for securities of energy supply are issues high on the political agenda these days. Governments are putting strategic plans in motion to decrease primary energy use, take carbon out of fuels and facilitate modal shifts. Man's energy requirements are touching astronomical heights. The natural resources of the Earth can no longer cope with it as their rate of consumption far outruns their rate of regeneration. The automotive sector is without a doubt a chief contributor to this mayhem as fossil fuel resources are fast depleting. The harmful emissions from vehicles using these fuels are destroying our forests and contaminating our water bodies and even the air that we breathe. The need of the hour is to look not only for new alternative energy resources but also clean energy resources. Hydrogen is expected to be one of the most important fuels in the near future to meet the stringent emission norms.
Technical Paper

Computational Analysis of Flap Camber and Ground Clearance in Double-Element Inverted Airfoils

2019-06-11
2019-01-5065
Drag and lift are the primary aerodynamic forces experienced by automobiles. In competitive automotive racing, the design of inverted wings has been the subject of much research aimed at improving the performance of vehicles. In this direction, the aerodynamic impact of change in maximum camber of the flap element and ground effect in a double-element inverted airfoil was studied. The National Advisory Committee for Aeronautics (NACA) 4412 airfoil was taken as the constant main element. The camber of the flap element was varied from 0% to 9%, while ground clearance was varied from 0.1c to 1.0c. A two-dimensional (2D) Computational Fluid Dynamics (CFD) study was performed using the realizable k-ε turbulence model in ANSYS Fluent 18.2 to analyze the aerodynamic characteristics of the airfoil. Parameters such as drag coefficient, lift coefficient, pressure distribution, and wake flow field were investigated to present the optimum airfoil configuration for high downforce and low drag.
Technical Paper

Potential and Challenges of Using Biomass-Based Resources in Bhutan

2024-04-09
2024-01-2494
Bhutan is a small nation in the eastern Himalayas, between two of the world's largest neighbors and fastest-growing economies; China, and India. The GDP of the country is $2.707 Billion as of 2022. Bhutan’s largest renewable source is hydropower, which has a known potential of 30,000 MW. However, it has only been able to harvest only 1,480 MW (5% of the potential). The current overall electrification rate is 99% overall with 98.4% in rural areas. It exports 75.5% of total electricity generated in the country to India. However, the reliable supply of electricity remains a big challenge. The government is also pushing the use of renewable energy sources like solar and wind to diversify the energy mix and enhance the power security of the country. The share of renewable energy is very minimal at present amounting to 723 kW Solar PV and 600 kW Wind power.
X